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Introduction

Given a triangle x in the Euclidean plane, we associate certain complex
numbers to x, namely “algebraic sides”, “moduli” and “double angles”.
In turn, these complex numbers determine any triangle up to similarity
(cf. Remark 1.6 and Corollary 1.10). We proceed in the same way with
quadrangles, where we consider the set XQ of quadrangles with ordered
vertices up to affine transformations. Besides the canonical operation of
S4 on this set, given by the permutations of the vertices of a quadrangle,
there is another action on a suitable subset Y Q ⊂ XQ. This action is
induced by the so-called pedal triangle construction (cf. Corollary 1.31).
Given a triangle x and an additional point x0, one derives another triangle
by dropping perpendiculars from the point x0 to the sides of x. The points of
intersection of the perpendiculars and the sides of x are called pedal points.
We thus get three pedal points and we take these pedal points as the pedal
triangle x′ of x. The three points of x together with x0 form a quadrangle y.
From this quadrangle we derive a new quadrangle consisting of x0 and of the
points of x′. We call it the pedal quadrangle of y with respect to x0. This
action cannot be defined on all quadrangles since the points of the pedal
triangle are collinear if x0 lies on the circumcircle of x (cf. Lemma 1.25).

The aim of this thesis is to show that these two operations generate a
group isomorphic to S6 (Theorem 3.3). For this purpose, we firstly define a
map

v : XQ −→ V

in terms of the algebraic sides, where

V =
(
S1
)6

/∆
(
S1
)

and ∆ is the diagonal map. The map v is injective, whence the group V
contains the set XQ.

In Section 2, we establish an action of S6×{±1} on V . Consider the action
of S4 on XQ given by the permutations of the vertices of a quadrangle. There
is an injective group homomorphism

δ : S4 −→ S6 × {±1}

such that v is δ-equivariant (cf. Lemmas 2.8 and 2.9). In section 3 we
furthermore find an element φ̂0 of order 3 in S6 ×{±1} that corresponds to
the action induced by the pedal triangle construction, meaning the following.
Given an element [y] ∈ Y Q, the image of the pedal quadrangle of [y] under
the map v is equal to φ̂0 (v([y])) (cf. Corollary 3.2). We conclude by proving
that the element φ̂0 and the group δ(S4) generate a group isomorphic to S6.

The scope of this thesis is based on the text “The variety of angles” by
M. Rost (cf. [3]).

At this point I would like to thank Prof. Markus Rost for his support and
advice during the preparation of this thesis.
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1. Triangles and Quadrangles

1.1. Triangle Relations. In the following, we identify the Euclidean plane
with the complex numbers C and denote by : C −→ C, z 7−→ z the
complex conjugation. Define

S1 =
{

z ∈ C
∣∣ |z| = 1

}
where | · | denotes the complex norm.

Definition 1.1. Let D be a set with |D| = 3 and define XD to be the set
of maps x : D −→ C for which the following conditions hold, where we set
xi := x(i).

• x is injective
• xi, xj , xk are not collinear for i, j, k ∈ D, pairwise distinct

We call an element x ∈ XD a D-labeled triangle or simply a triangle with
points xi, i ∈ D.

Definition 1.2. Let v and w be two distinct complex numbers. We define

û(v, w) :=
v − w

v − w
∈ S1

and call it the algebraic side given by v and w.

Consider the group Aff(1,C) of affine automorphisms ofC and an element
g of it. Then, for z ∈ C, g has the form g(z) = az + b, where a ∈ C \ {0}
and b ∈ C. One has

û
(
g(v), g(w)

)
=

av + b− aw − b

av + b− aw − b

=
a

a
û(v, w)(1)

Hence û(v, w) is invariant under translations and under multiplication with
an element in R \ {0}.

Definition 1.3. Let v, y, w ∈ C with v 6= y, w 6= y. Then define

τ̂(v, y, w) :=
w − y

v − y
∈ C

We call τ̂(v, y, w) the modulus at y given by v, y, w.

We easily observe that τ̂(v, y, w) is Aff(1,C)-invariant. Namely, let again
g ∈ Aff(1,C) as above. Then

τ̂
(
g(v), g(y), g(w)

)
=

aw + b− ay − b

av + b− ay − b

=
w − y

v − y

= τ̂(v, y, w)

In order to interpret û(v, w) and τ̂(v, y, w) geometrically, we consider polar
coordinates. Let z ∈ C\{0}. Then z can be uniquely written as z = rze

iϕz
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with rz = |z| , ϕz ∈ [0, 2π) the argument of z, and i the imaginary unit.
Dividing two complex numbers z, z′ 6= 0 we get

z

z′
=

rze
iϕz

rz′eiϕz′
=

rz

rz′
ei(ϕz−ϕz′ )

Thus
z

z
=

rze
iϕz

rzei(−ϕz)
= ei·2ϕz

Therefore û(v, w) is the element of S1 with argument ϕû(v,w) = 2ϕv−w, see
Figure 1.

 

to the real axis

C

2× angle of the side v − w

w

v

S1

û(v, w)

Figure 1

The argument of τ̂(v, y, w) corresponds to the angle at y in the triangle
with points v, y, w, confer Figure 2.

y

v

w

ϕτ̂(v,y,w)

Figure 2

Definition 1.4. Two D-labeled triangles x, x′ are called similar, if there
exists an element g ∈ Aff(1,C) with g (xi) = x′i for all i ∈ D. In that case
we write g(x) = x′.

Lemma 1.5. Let x, x′ be two D-labeled triangles. Then the following state-
ments are equivalent.

(1) For all l ∈ D, the angle at xl in the triangle x is equal to the angle
at x′l in the triangle x′.
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(2) The triangles x and x′ are similar, i.e., there exists an element g ∈
Aff(1,C) with g(x) = x′.

Proof. Easy. �

Remark 1.6. Let x be a D-labeled triangle. Then each element τ̂(xi, xj , xk),
where i, j, k ∈ D are pairwise distinct, determines the triangle up to sim-
ilarity. Namely, up to similarity we may assume xi = 0 and xj = 1 and
xk = z. Then one has

τ̂(1, 0, z) =
z − 0
1− 0

= z

which shows that τ̂(1, 0, z) determines x.

Definition 1.7. For complex numbers v, w, y with v 6= y, w 6= y we define
the algebraic angle at y

α̂(v, y, w) :=
û(w, y)
û(v, y)

∈ S1

Note that

α̂(v, y, w) =
τ̂(v, y, w)
τ̂(v, y, w)

(2)

as one easily deduces from the definitions of the algebraic side and the
modulus. Since τ̂(v, y, w) is Aff(1,C)-invariant, the same holds for α̂(v, y, w).

We interpret α̂(v, y, w) geometrically. Using equation (2), one observes
that α̂(v, y, w) is the element of S1 whose argument is twice the angle at
y in the triangle with points v, y, w. For this reason we call an algebraic
angle α̂(v, y, w) also a double angle. As seen in Remark 1.6, it is sufficient
to consider only triangles x with points xi = 0 and xj = 1. Set xk = z, then
Figure 3 shows the geometric interpretation of α̂(1, 0, z).

0 1

z

ϕz

α̂(1, 0, z) = τ̂(1,0,z)

τ̂(1,0,z)
= z

z
= ei2ϕz

Figure 3

Definition 1.8. Define XD to be the set of D-labeled triangles up to affine
automorphisms, i.e., XD = XD/ Aff(1,C). Denote by [ · ] the residue class
in XD.
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We can associate to any D-labeled triangle x its algebraic sides, its moduli
and its double angles. Among them certain relations hold which will be
considered below. For simplicity of notation, we will write

α̂ijk, ûij , τ̂ijk

for
α̂(xi, xj , xk), û(xi, xj), τ̂(xi, xj , xk),

respectively, if it is clear from the context which triangle is considered.

Lemma 1.9. Let x be a D-labeled triangle. Then the following relations
hold
(1) ûij = ûji, i, j ∈ D, i 6= j
(2) α̂ijk · α̂jki · α̂kij = 1,
(3) α̂ijk = α̂−1

kji,

(4) τ̂jik =
1− α̂ijk

1− α̂ikj

where in (2)–(4) i, j, k ∈ D are pairwise distinct.

Proof. (1) is obvious. (2) follows immediately from the fact that the sum of
the double angles of a triangle is 2π. The identity

α̂ijk · α̂kji =
ûkj

ûij
· ûij

ûkj
= 1

shows (3). For (4) we may assume xi = 0, xj = 1 and xk = z. Then
τ̂(1, 0, z) = z. Furthermore one has

1− α̂(0, 1, z)
1− α̂(0, z, 1)

=
1− û(z,1)

û(0,1)

1− û(1,z)
û(0,z)

=
1− z−1

z−1

1− 1−z
1−z ·

−z
−z

=
(z − 1)− (z − 1)

z − 1
· (1− z)z
(1− z)z − (1− z)z

=
z − z

z − 1
· (1− z)z

z − z
= z = τ̂(1, 0, z)

�

Corollary 1.10. Any D-labeled triangle x is, up to similarity, determined
by the double angles α̂ijk, i, j, k ∈ D, pairwise distinct.

Proof. Due to Remark 1.6 the τ̂ijk determine the triangle and they can be
expressed in terms of the double angles α̂ijk by 1.9(4). �

The following remark states an alternative proof of the corollary. Whereas
the first proof is algebraic, this second one is geometrical and uses a well-
known fact from Euclidean geometry, namely the Central Angle Theorem.

Remark 1.11. Let x be a triangle with points A, B, C, and let β and γ be
two angles of x. Denote by M the center of its circumcircle. By the Central
Angle Theorem the central angle is twice the peripherical angle, see Figure 4
on the left. Thus we receive a triangle similar to x when inscribing 2β and
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2γ as central angles in an arbitrary circle as shown in Figure 4 on the right.
Consequently, the double angles determine any triangle up to similarity.

A

C

B

2γ

M

γ

C B

A

2γ

2β

Figure 4

Example 1.12. Ceva’s Theorem. This well-known theorem was first pub-
lished in 1678 by Giovanni Ceva and states the following. Let x = (x1, x2, x3)
be a triangle and let y1, y2, y3 be three points lying on the sides of x as
depicted in Figure 5. Denote by ti the line through xi and yi for i = 1, 2, 3.

y3

y1

x3

x2

y2

x0

x1

Figure 5

If t1, t2 and t3 meet in a point x0, then one has
|x1 − y3|
|x2 − y3|

· |x2 − y1|
|x3 − y1|

· |x3 − y2|
|x1 − y2|

= 1

where | · | denotes the length of a side.

Here we do not give the converse statement, which also holds and which
is usually considered as part of Ceva’s Theorem.

We will prove the following lemma about moduli that obviously yields
Ceva’s Theorem.

Lemma 1.13. One has the identity

τ̂(x2, y3, x1) · τ̂(x3, y1, x2) · τ̂(x1, y2, x3) = −1
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Proof. First, we consider the three factors on the left hand side separately.
Clearly,

τ̂(x2, y3, x1) =
τ̂(x3, y3, x1)
τ̂(x3, y3, x2)

(3)

From Lemma 1.9(4) we deduce for the numerator

τ̂(x3, y3, x1) =
1− α̂(y3, x3, x1)
1− α̂(y3, x1, x3)

(4)

Now consider the triangle consisting of the points y3, x3, x1 in Figure 5.
The angle at x3 in this triangle is obviously the same as in the triangle
consisting of x0, x3, x1. Thence

α̂(y3, x3, x1) = α̂(x0, x3, x1)

Analogously, one has

α̂(y3, x1, x3) = α̂(x2, x1, x3)

Inserting these results in (4) yields

τ̂(x3, y3, x1) =
1− α̂(x0, x3, x1)
1− α̂(x2, x1, x3)

For the denominator in (3) we analogously get (by interchanging the indices
1 and 2)

τ̂(x3, y3, x2) =
1− α̂(x0, x3, x2)
1− α̂(x1, x2, x3)

Thus

τ̂(x2, y3, x1) =
1− α̂(x0, x3, x1)
1− α̂(x2, x1, x3)

· 1− α̂(x1, x2, x3)
1− α̂(x0, x3, x2)

Since the situation at hand is completely symmetric, we receive analogous
results for the other two factors of the claim. Namely,

τ̂(x3, y1, x2) =
1− α̂(x0, x1, x2)
1− α̂(x0, x1, x3)

· 1− α̂(x2, x3, x1)
1− α̂(x3, x2, x1)

And

τ̂(x1, y2, x3) =
1− α̂(x0, x2, x3)
1− α̂(x0, x2, x1)

· 1− α̂(x3, x1, x2)
1− α̂(x1, x3, x2)

From now on we write α̂ijk for α̂(xi, xj , xk) and τ̂ijk for τ̂(xi, xj , xk), where
0 6 i, j, k 6 0. Consequently, using Lemma 1.9(4) one has

τ̂(x2, y3, x1) · τ̂(x3, y1, x2) · τ̂(x1, y2, x3)

=
1− α̂031

1− α̂032
· 1− α̂123

1− α̂213
· 1− α̂012

1− α̂013
· 1− α̂231

1− α̂321
· 1− α̂023

1− α̂021
· 1− α̂312

1− α̂132

=
1− α̂031

1− α̂013
· 1− α̂123

1− α̂132
· 1− α̂012

1− α̂021
· 1− α̂231

1− α̂213
· 1− α̂023

1− α̂032
· 1− α̂312

1− α̂321

= τ̂102 · τ̂203 · τ̂301 · τ̂213 · τ̂321 · τ̂132

Furthermore, one easily checks that

τ̂102 · τ̂203 · τ̂301 = 1
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and
τ̂213 · τ̂321 · τ̂132 = −1

This finally yields the claim. �

1.2. Quadrangle Relations.

Definition 1.14. Let Q be a set with |Q| = 4 and define XQ to be the set
of maps x : Q −→ C for which the following conditions hold, where we set
xi := x(i).

• x is injective
• xi, xj , xk are not collinear for i, j, k ∈ Q, pairwise distinct

We call an element x ∈ XQ a Q-labeled quadrangle or simply a quadrangle
with points xi, i ∈ Q.

Definition 1.15. Let XQ = XQ/ Aff(1,C) be the set of Q-labeled quad-
rangles up to affine automorphisms.

For a quadrangle x ∈ XQ there are again assigned ûij , τ̂ijk and α̂ijk,
where now i, j, k are pairwise distinct elements of Q.

Remark 1.16. We call a triangle consisting of 3 of the points of a Q-labeled
quadrangle x a partial triangle of x. Then any Q-labeled quadrangle x is,
up to similarity, determined by the partial triangles (given up to similarity).
Namely, we may assume xi = 0 and xj = 1. Now knowledge of the partial
triangle of x consisting of the points xi, xj , xk determines xk for k ∈ Q,
k 6= i, j. One easily observes that already 2 partial triangles determine any
Q-labeled quadrangle up to similarity.

So far, we have assigned to a triangle (quadrangle, respectively) several
complex numbers. Our aim is now to use the algebraic sides to embed the
set XQ of quadrangles up to affine automorphisms into a group which is
isomorphic to

(
S1
)n, where n ∈ N, n > 1.

For this purpose let R be the set of 2-element subsets of Q. For each
s ∈ R define a map

ûs : XQ −→ S1, by

ûs(x) =
xi − xj

xi − xj
= ûij(x), for s = {i, j}.

This map is well-defined since ûij(x) = ûji(x) for all x ∈ XQ and for all
i, j ∈ Q, i 6= j.

Now define
U := S1 ⊗Z ZR

Then one has
U = S1 ⊗Z ZR =

(
S1
)R

under the isomorphism

U ∼= S1 ⊗Z Z6 −→
(
S1
)6 ∼= (S1

)R
z ⊗ (t1, . . . , t6) 7−→ (zt1

1 , . . . , zt6
6 )
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We combine the algebraic sides ûs, s ∈ R, and get a map

u : XQ −→ U

x 7−→ u(x) = (ûs(x))s∈R

Now consider the following two diagonal maps

∆Z : Z −→ Z
R

1 7−→
∑
s∈R

s

where we use ZR =
⊕

s∈R Z · s, and

∆S1 : S1 7−→
(
S1
)R

z 7−→ fz

where fz(s) = z for all s ∈ R. Obviously, both maps are group homomor-
phisms. We will denote both by ∆, if the context makes clear which diagonal
map is considered. Define

V := S1 ⊗Z
(
Z

R/∆(Z)
)

One checks that, for each n > 1, the following map is an isomorphism.(
S1
)n

/∆(S1) −→ S1 ⊗Z
(
Z

n/∆(Z)
)

[(s1, . . . , sn)] 7−→
n∑

i=1

si ⊗ [ei]

where [ · ], [ · ] denotes the residue class in
(
S1
)n

/∆(S1) and in Zn/∆(Z),
respectively. Thus one has

V =
(
S1
)R

/∆(S1)

We wish to embed the set of Q-labeled quadrangles up to affine automor-
phisms XQ into the group V . Therefore consider the map

v : XQ −→ V

[x] 7−→ [u(x)]

where [ · ], [ · ] denote the residue classes in XQ and in V , respectively. We
show that v is well-defined. If [x] = [x′] in XQ, then there exists an affine
automorphism g ∈ Aff(1,C), say g(z) = az + b where a ∈ C \ {0} and
b, z ∈ C, such that g(x) = x′. Then one has by equation (1)(

ûs

(
g(x)

))
s∈R

=
( a

a
· ûs(x)

)
s∈R

= ∆S1

( a

a

)
·
(
ûs(x)

)
s∈R

Hence
[(

ûs∈R (g(x))
)]

=
[(

ûs(x)
)
s∈R

]
in V . This proves that v is well-

defined.

Lemma 1.17. The map v is injective.
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Proof. Assume v([x]) = v ([x′]) for two quadrangles x, x′ ∈ XQ. Then one
has [

(ûs(x))s∈R

]
= v([x]) = v

([
x′
])

=
[(

ûs

(
x′
))

s∈R

]
in V =

(
S1
)R

/∆
(
S1
)
. Hence there exists an element t ∈ S1 such that

ûs(x) = t · ûs (x′) for all s ∈ R. This yields

ûs(x)
ûs′(x)

=
ûs (x′)
ûs′ (x′)

for all s, s′ ∈ R

Therefore all double angles of x and x′ coincide. According to Corollary 1.10,
the double angles determine any triangle up to similarity. Hence all partial
triangles of the quadrangles x and x′ are similar. Due to Remark 1.16, this
shows that x and x′ are similar, which proves [x] = [x′] in XQ. �

For each ordered triple (ijk) with i, j, k ∈ Q, pairwise distinct, there is
the function

α̂ijk : XQ −→ S1,

x 7−→ α̂ijk(x) = α̂(xi, xj , xk)

Let Mα̂ be the set consisting of these functions for all ordered triples (ijk)
as above.

Lemma 1.18. Mark an element 0 ∈ Q. The set Mα̂ is determined by the 6
elements α̂0ij, i, j ∈ Q, i 6= j. Among these elements the following relations
hold:

α̂0ij · α̂0jk · α̂0ki = α̂0ji · α̂0kj · α̂0ik(5)

(1− α̂0ij) · (1− α̂0jk) · (1− α̂0ki) = (1− α̂0ji) · (1− α̂0kj) · (1− α̂0ik)(6)

Proof. Using 1.9(3) one has for i, j ∈ Q, i 6= j

α̂ij0 = α̂−1
0ji

α̂i0j =
û0j

ûi0
· ûij

ûij
=

ûij

û0i
· û0j

ûij
= α̂0ij · α̂−1

0ji

α̂ijk =
ûj0

ûij
·
ûjk

û0j
= α̂−1

0ji · α̂
−1
0jk, (i, j, k ∈ Q \ {0})

Therefore Mα̂ is determined by the α̂0ij , i, j ∈ Q, i 6= j. Equation (5) follows
directly from the definition of the double angles. One has

1 = τ̂102 · τ̂203 · τ̂301 =
1− α̂012

1− α̂021
· 1− α̂023

1− α̂032
· 1− α̂031

1− α̂013

by the definition of the modulus and by Lemma 1.9(4). This shows (6). �

Let x be a Q-labeled quadrangle. Due to relation (5) already five of the
double angles α̂0ij(x), i, j ∈ Q, i 6= j, determine all double angles of x.

Definition 1.19. For a quadrangle x ∈ XQ define the cross ratios of x to
be

γ̂(xi, xj , xk, xl) := γ̂ijkl := α̂ijk · α̂kli =
ûjk · ûil

ûij · ûkl

where i, j, k, l are pairwise distinct elements of Q.
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It follows directly from the definition that γ̂(xi, xj , xk, xl) is Aff(1,C)-
invariant, because the double angles are invariant under Aff(1,C). For each
ordered quadruple (ijkl) with i, j, k, l ∈ Q, pairwise distinct, there is the
function

γ̂ijkl : XQ −→ S1,

x 7−→ γ̂ijkl(x) = γ̂(xi, xj , xk, xl)

Denote by Mγ̂ the set of these functions for all ordered quadruples (ijkl) as
above.

For each triple (ijk) with i, j, k ∈ Q, pairwise distinct, we do not only
have the function α̂ijk : XQ −→ S1, but also the function τ̂ijk : XQ −→
S1, τ̂ijk(x) = τ̂(xi, xj , xk). Since α̂ijk and τ̂ijk are Aff(1,C)-invariant
(cp. p. 2), we get functions τ̂ijk, α̂ijk : XQ −→ S1. The same holds for
γ̂ijkl : XQ −→ S1.

For s ∈ R let us ∈ Hom
(
ZR,Z

)
be the projection, namely

us : ZR −→ Z

f 7−→ f(s)

Define
αijk := u{j,k} − u{i,j}

where i, j, k are pairwise distinct elements of Q. Obviously, one has ∆(Z) ⊂
Ker(αijk). Hence αijk ∈ Hom

(
ZR/∆(Z),Z

)
.

Set
Mα := {αijk | i, j, k ∈ Q pairwise distinct }

Then Mα has 24 elements.
Furthermore, for pairwise distinct elements i, j, k, l ∈ Q define

γijkl := αijk + αkli ∈ Hom
(
Z

R/∆(Z),Z
)

Set
Mγ = { γijkl | i, j, k, l ∈ Q pairwise distinct }

One easily finds
γijkl = γjilk = γklij = γlkji

for all pairwise distinct i, j, k, l ∈ Q. Marking again an element 0 ∈ Q, we
thus get

Mγ = { γ0ijk | pairwise distinct i, j, k ∈ Q \ {0} }
Hence Mγ has 6 elements.

The double angles α̂ijk are closely related to the maps αijk as the next
lemma shows.

Lemma 1.20. For pairwise distinct elements i, j, k ∈ Q consider the com-
position of maps (

idS1 ⊗αijk

)
◦ v : XQ −→ S1 ⊗Z Z

where v is the map defined on p. 9. And consider the map α̂ijk : XQ −→ S1

in terms of the double angles. Then one has

α̂ijk ≡
(
idS1 ⊗αijk

)
◦ v

using the canonical isomorphism S1 −→ S1 ⊗Z Z, s 7−→ s⊗ 1.
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Proof. Let [x] ∈ XQ and let i, j, k be pairwise distinct elements of Q. One
finds ((

idS1 ⊗αijk

)
◦ v
)
([x]) =

(
idS1 ⊗αijk

) ([
(ûs(x))s∈R

])
=
(
idS1 ⊗αijk

)(∑
s∈R

ûs(x)⊗ [s]

)

= ûjk(x)⊗ 1− ûij(x)⊗ 1

=
ûjk(x)
ûij(x)

⊗ 1

= α̂ijk([x])

where we use the canonical isomorphism S1 ∼= S1 ⊗Z Z in the last step. �

Corollary 1.21. Mα̂ has 24 elements.

Proof. One has |Mα| = 24. Due to Lemma 1.20, it is sufficient to prove that
α̂djk 6≡ α̂hmn for all d, j, k, h,m, n ∈ Q where d, j, k are pairwise distinct, as
well as h, m, n are pairwise distinct. Assume α̂djk ≡ α̂hmn, then one has

α̂djk ([x]) = α̂hmn ([x]) ∀ [x] ∈ XQ(7)

Thus this equation holds for [x] ∈ XQ with points xd = 0, xj = 1, xk = i
and xl = 2+2i, where i denotes the imaginary unit. Easy calculations yield
that

α̂hmn ≡ α̂jdl or α̂hmn ≡ α̂ldk or α̂hmn ≡ α̂jkd or α̂hmn ≡ α̂djk

Now consider the Q-labeled quadrangle y with points yd = 0, yj = 1, yk =
2+2i and yl = i. Equation (7) also holds for y. But one easily observes that
α̂hmn([y]) does not coincide with either α̂jdl([y]) or α̂ldk([y]) or α̂jkd([y]).
This completes the proof. �

Not only are the double angles α̂ijk and the maps αijk closely related, but
so are the cross ratios γ̂ijkl and the maps γijkl.

Lemma 1.22. For pairwise distinct elements i, j, k, l ∈ Q consider the com-
position of maps (

idS1 ⊗ γijkl

)
◦ v : XQ −→ S1 ⊗Z Z

where v is the map defined on p. 9. And consider the map γ̂ijkl : XQ −→ S1

in terms of the cross ratios. Then one has

γ̂ijkl ≡
(
idS1 ⊗ γijkl

)
◦ v

using the canonical isomorphism S1 ∼= S1 ⊗Z Z.

Proof. This follows from Lemma 1.20, using the fact that one has γ̂ijkl =
α̂ijk · α̂kli and γijkl = αijk + αkli by definition. �

Corollary 1.23. Mγ̂ has 6 elements. The considerations above for Mγ

yield Mγ̂ = { γ̂0ijk | pairwise distinct i, j, k ∈ Q \ {0} }, where 0 ∈ Q.
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Proof. Due to Lemma 1.22, one has |Mγ̂ | 6 |Mγ | = 6. Assume that γ̂0jkl ≡
γ̂0hmn for pairwise distinct 0, j, k, l ∈ Q and pairwise distinct 0, h,m, n ∈ Q.
Then

γ̂0jkl([x]) = γ̂0hmn([x]) ∀ [x] ∈ XQ

This equation especially holds for x ∈ XQ with points x0 = 0, xj = 1, xk = i
and xl = 2 + 2i. Easy calculations show that

γ̂0hmn ≡ γ̂0ljk or γ̂0hmn ≡ γ̂0jkl

But for the Q-labeled quadrangle y with points y0 = 0, yj = 1, yk = 2 + 2i
and yl = i one has γ̂0jkl([y]) 6= γ̂0ljk([y]). Thus γ̂0hmn ≡ γ̂0jkl. This shows
that |Mγ̂ | = 6. �

1.3. The Pedal Triangle. We will now consider the so-called pedal triangle
construction, which will later on yield an action on a subset of the set of
quadrangles up to affine automorphisms.

In [1], one finds the following exercise (cf. p. 16, ex. 12).
Given a triangle ABC and a point P in its plane (but not on a side nor on
the circumcircle), let A1B1C1 be the derived triangle formed by the feet of the
perpendiculars from P to the sides BC, CA, AB. Let A2B2C2 be derived
analogously from A1B1C1 (using the same P ), and A3B3C3 from A2B2C2.
Then A3B3C3 is directly similar to ABC.

(
Hint: ∠PBA = ∠PA1C1 =

∠PC2B2 = ∠PB3A3

)
During this section, let D = {1, 2, 3} and Q = {0, 1, 2, 3}.

Definition 1.24. Given a D-labeled triangle x and an additional point x0.
Then the pedal triangle of x relative to point x0 is defined as

φx0(x) := x′ = (x′1, x
′
2, x

′
3)

where x′i, 1 6 i 6 3, is the foot of the perpendicular from x0 to the side
xkxj with i 6∈ {k, j}. See Figure 6.
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x2 x′1 x3

x′2

x′3

x0

x1

pedal triangle

Figure 6. The pedal triangle construction

We summarise some properties of this construction. In the next three
lemmas, let x be a D-labeled triangle and let x0 be an additional point.
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Lemma 1.25. The points of the pedal triangle of x relative to x0 are
collinear if and only if x0 lies on the circumcircle of x.

Proof. Cf. [2], Th. 2.51 �

Lemma 1.26. If x0 does not lie on the circumcircle of x, then it does not
lie on the circumcircle of the pedal triangle of x relative to x0.

Proof. Suppose the point x0 does not lie on the circumcircle of x, but x0

lies on the circumcircle of the pedal triangle φx0(x). For k ∈ D denote by
gk the line through x′k and x0 (cf. Figure 7). We construct the triangle x
(with points x1, x2, x3) from x0 and φx0(x). From the definition of the
pedal triangle we deduce that, for each i ∈ D, xi is the intersection of the
perpendiculars to gk, k ∈ D \ {i}, through the point x′k. Hence the side
x3x0 is the hypothenuse of the right triangle with points x0, x′1, x3 as well
as of the triangle with points x0, x′2, x3. Due to Thales’ Theorem the four
points x0, x′1, x′2, x3 lie on a circle with diameter x3x0. It is easy to see that
this is the circumcircle of the pedal triangle. Since x′3 lies on this circle, we
deduce from Thales’ Theorem that the triangle with points x0, x3, x′3 is a
right triangle with the right angle at x′3. But x3 is the intersection of the 3
perpendiculars to g1, g2 and g3 through the points x′1, x′2, x′3 respectively.
Hence x1 = x2 = x3, which is a contradiction, because x is a D-labeled
triangle. �

g1

x′2

x3

x0

M

x′1

g3 g2

x′3

Figure 7

Lemma 1.27. If x1, x2, x3 are not collinear, then the point x0 is not
collinear with any two points of x′.

Proof. It is sufficient to show that x1, x2, x3 are collinear, if x0, x′1, x′2 are
collinear. Since the sides x3x2 and x0x

′
1 are orthogonal as well as the sides

x3x1 and x0x
′
2, one deduces from the collinearity of the points x0, x′1, x′2

that x1, x2, x3 are collinear. �

We can iterate the construction and consider the pedal triangle of the
pedal triangle, again relative to x0. We call it the second pedal triangle of
x with respect to x0 and write φ2

x0
(x). In general, we denote by φn

x0
(x) the

n-th pedal triangle of x with respect to the point x0.
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Remark 1.28. If x0 lies on a side of x, then x0 itself is a vertex of φx0(x),
whence the second pedal triangle φ2

x0
(x) has only two points.

The following lemma gives a proof of the exercise above. (Part of this
proof can be found in [2], Th. 1.92.)

Lemma 1.29. Let y = (x0, x1, x2, x3) be a Q-labeled quadrangle such that
x0 does not lie on the circumcircle of the triangle x = (x1, x2, x3). Consider
the third pedal triangle φ3

x0
(x) = (x′′′1 , x′′′2 , x′′′3 ) relative to x0. Then the quad-

rangles y and (x0, x
′′′
1 , x′′′2 , x′′′3 ) are similar under a similarity with fixed point

x0.

Proof. We begin by showing that the triangles x and φ3
x0

(x) are similar.
Consider Figure 6. Setting β := ∠x0x1x2 and δ := ∠x0x

′
2x

′
3, we firstly prove

the claim β = δ. Since the triangles (x′3, x0, x1) and (x′2, x0, x1) are both
right triangles with the same hypothenuse x0x1, we deduce from Thales’
Theorem that the four points x0, x1, x

′
2, x

′
3 all lie on a circle, namely the

circumcircle of the above triangles. Hence the angles β and δ belong to the
same chord x0x

′
3. Due to the Inscribed Angle Theorem, β and δ are equal.

It follows that

∠x0x1x2 = ∠x0x
′
2x

′
3 = ∠x0x

′′
3x

′′
1 = ∠x0x

′′′
1 x′′′2(8)

Thus one in general has

∠x0xjxk = ∠x0x
′′′
j x′′′k(9)

for pairwise distinct i, j, k, 1 6 i, j, k 6 3. One furthermore has

∠xix0xj = ∠x′′′i x0x
′′′
j

for 1 6 i, j 6 3, i 6= j. This can be easily deduced from equation (9).
Namely, one has

∠xix0xj = π − ∠x0xixj − ∠x0xjxi

= π − ∠x0x
′′′
i x′′′j − ∠x0x

′′′
j x′′′i

= ∠x′′′i x0x
′′′
j

for all 1 6 i, j 6 3 i 6= j. Thus all corresponding angles are the same. �

Definition 1.30. Let YQ ⊂ XQ be the set of Q-labeled quadrangles y such
that for each i ∈ Q holds

• yi does not lie on the circumcircle of the triangle with points yj , yk,
yl, where i 6∈ {j, k, l}

Define Y Q := YQ/ Aff(1,C).

Corollary 1.31. For each i ∈ Q, there is the pedal triangle construction
relative to i

φi : Y Q −→ Y Q

[y] 7−→ [(yi, y
′
j , y

′
k, y

′
l)]

where (y′j , y
′
k, y

′
l) is the pedal triangle relative to yi of the triangle consisting

of the three points yj, yk, yl. One has φ3
i
≡ idY Q

.
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Proof. Without loss of generality, we may assume i = 0. We show that the
map φ0 is well defined. Let y ∈ YQ. According to Lemmas 1.25, 1.26, 1.27
and Remark 1.28, one has φn

0
(y) ∈ YQ for all n > 1.

For g ∈ Aff(1,C) all corresponding angles of the quadrangles y and g(y)
coincide. Due to equation (8), one in general has

∠x0x
′
lx

′
j = ∠x0xkxl

= ∠g(x0)g(xk)g(xl)

= ∠g(x0) (g(xl))
′ (g(xj))

′

where j, k, l ∈ Q \ {0} are pairwise distinct. Hence one also has

∠x′jx0x
′
k = ∠ (g(xj))

′ g(x0) (g(xk))
′

for all j, k ∈ Q \ {0}, j 6= k. This shows that all corresponding angles of
the quadrangles φ0(y) and φ0

(
g(y)

)
coincide. Hence all partial triangles are

similar. By Remark 1.16 the quadrangles φ0(y) and φ0

(
g(y)

)
are similar.

This shows that φ0 is well defined. The other assertion has already been
proven in Lemma 1.29. �

We wish to understand what happens with the double angles and the cross
ratios of a quadrangle in Y Q when applying the pedal triangle construction.
Therefore we define

M̂ := Mα̂ ∪Mγ̂

Then M̂ contains 30 elements according to Corollaries 1.21 and 1.23. For
x ∈ XQ define the set M̂(x) as the union of the two sets Mα̂(x) and Mγ̂(x),
where

Mα̂(x) :=
{(

α̂ijk(x)
)
ijk

∣∣∣ i, j, k ∈ Q pairwise distinct
}

and

Mγ̂(x) :=
{(

γ̂0ijk(x)
)
0ijk

∣∣∣ i, j, k ∈ Q \ {0} pairwise distinct
}

where 0 is an element of Q.

Lemma 1.32. Let y = (x0, x1, x2, x3) ∈ Y Q and consider the pedal triangle
construction φ0. Then one finds

M̂(y) = M̂(φ0(y)),

i.e., the pedal triangle construction relative to x0 leaves the set M̂ invariant.

Proof. Set y′ := φ0(y). For ijk a permutation of 123 one has
(1) α̂0ij(y′) = α̂0jk(y) after equation 1.29(8)

(2) α̂ij0(y′) = (α̂0ji(y′))−1 (1)
= (α̂0ik(y))−1 = α̂ki0(y)

(3) α̂ijk(y′) = α̂0jk(y′) · α̂ij0(y′)
(1)
= α̂0ki(y) · α̂ki0(y) = α̂k0i(y)

(4) α̂i0j(y′) = α̂0ij(y′) · α̂ij0(y′)
(1)
= α̂0jk(y) · α̂ki0(y) = γ̂0jki(y)

(5) γ̂0ijk(y′) = α̂0ij(y′) · α̂jk0(y′)
(1)
= α̂0jk(y) · α̂ij0(y) = α̂ijk(y)

where we use Lemma 1.18 in (2) to (5). Comparing the left hand sides of
the equations above with the right hand sides yields M̂(y) = M̂(y′). �
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Remark 1.33. Furthermore we deduce from Lemma 1.32(4) that, in gen-
eral, one has Mα̂(y′) 6= Mα̂(y). This means that the pedal triangle construc-
tion does not leave invariant the set of double angles of a given triangle. But
when we identify the group Aut

(
M̂
)

of bijections of M̂ with the symmetric
group S30, then Lemma 1.32 shows the existence of an element in S30 that
corresponds to the pedal triangle construction.

2. An action of S6 × {±1} on ZR/∆(Z)

Let G = Aut(Q) be the group of bijections of Q. Hence G ∼= S4 :=
Aut({0, 1, 2, 3}).

Definition 2.1. (1) An ordering (i0i1i2i3) of Q is an enumeration i0, i1,
i2, i3 of the elements of Q. In other words, an ordering is a bijection
{0, 1, 2, 3} −→ Q.
(2) A cyclic ordering of Q is an ordering of Q defined up to a cyclic permu-
tation. Cyclic orderings are denoted by symbols [i0i1i2i3]. These symbols
are subject to the relations

[i0i1i2i3] = [i1i2i3i0] = [i2i3i0i1] = [i3i0i1i2]

One can “normalise” cyclic orderings by choosing an element i ∈ Q and by
writing cyclic orderings starting with i, namely [ijkl] where i, j, k, l ∈ Q are
pairwise distinct. Then this representation is uniquely determined by the
cyclic ordering.
(3) An orientation of Q is an ordering of Q well defined up to an even
permutation. Orientations are denoted by symbols

〈i0i1i2i3〉

They are subject to the relations

〈i0i1i2i3〉 =
〈
iσ(0)iσ(1)iσ(2)iσ(3)

〉
for any element σ of the alternating group A4 .

Denote by C = CQ the set of cyclic orderings of Q, and by O = OQ the
set of orientations of Q. Then one has |CQ| = 6 and |OQ| = 2. Consider the
following diagonal maps

∆R
Z : Z −→ Z

R, ∆C
Z : Z −→ Z

C and ∆O
Z : Z −→ Z

O

1 7−→
∑
r∈R

1 · r 1 7−→
∑
c∈C

1 · c 1 7−→
∑
q∈O

1 · q

Obviously, these maps are G-module homomorphisms induced by the canon-
ical action of G on R, C and O. They induce a natural action of G on the
cokernels of ∆R

Z
, ∆C

Z
and of ∆O

Z
. We will denote all diagonal maps by ∆, if

the context prevents confusion.
Set

Z(Q) := ZO/∆(Z)

Z(Q) is the free abelian group of rank 1 with generator [σ1] = −[σ2], where
σ1, σ2 are the orientations of Q. The G-action on ZO yields the following
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G-action on Z(Q) via the map

sgn: G −→ {±1}, sgn(g) =

{
1 if g is an even permutation

−1 else

where we use G ∼= S4. For [σ1] ∈ Z(Q) and g ∈ G, one has

g · [σ1] = sgn(g)[σ1](10)

Lemma 2.2. There exists a unique homomorphism of G-modules

Ψ̃ : ZR −→
(
Z
C/∆(Z)

)
⊗Z Z(Q)

with

Ψ̃({i, j}) =
[
[iljk] + [iklj] + [ijlk]

]
⊗ [〈ijkl〉](11)

for any ordering (ijkl) of Q, where [ · ], [ · ] denotes the residue class in
ZC/∆(Z) and Z(Q), respectively.

Proof. First, we show that Ψ̃ is well-defined. Denote by ˜̃Ψ((ijkl)
)

the right

hand side of (11). We show that ˜̃Ψ((ijkl)
)

only depends on the subset {i, j}
of Q. For the ordering (jikl) of Q, one finds˜̃Ψ((jikl)

)
=
[
[jlik] + [jkli] + [jilk]

]
⊗ [〈jikl〉](12)

We use [〈jikl〉] = −[〈ijkl〉] and normalise the cyclic orderings with i ∈ Q.
Subtracting (12) from (11), we get˜̃Ψ((ijkl)

)
− ˜̃Ψ((jikl)

)
=
[
[iljk] + [iklj] + [ijlk]

]
⊗ [〈ijkl〉]

−
[
[ikjl] + [ijkl] + [ilkj]

]
⊗
(
− [〈ijkl〉]

)
=
[
[iljk] + [iklj] + [ijlk] + [ikjl] + [ijkl] + [ilkj]

]
⊗ [〈ijkl〉]

=
[
∆(1)

]
⊗ [〈ijkl〉]

= 0

Hence, interchanging i and j does not change (11). Now consider the order-
ing (ijlk). ˜̃Ψ((ijlk)

)
=
[
[ikjl] + [ilkj] + [ijkl]

]
⊗ [〈ijlk〉](13)

One has˜̃Ψ((ijkl)
)
− ˜̃Ψ((ijlk)

)
=
[
[iljk] + [iklj] + [ijlk]

]
⊗ [〈ijkl〉]

−
[
[ikjl] + [ilkj] + [ijkl]

]
⊗
(
− [〈ijkl〉]

)
=
[
[iljk] + [iklj] + [ijlk] + [ikjl] + [ilkj] + [ijkl]

]
⊗ [〈ijkl〉]

=
[
∆(1)

]
⊗ [〈ijkl〉]

= 0



THE S6-SYMMETRY OF QUADRANGLES 19

Thus interchanging k and l does not change (11). From these two observa-
tions follows immediately that for the ordering (jilk) one also has˜̃Ψ((jilk)

)
= ˜̃Ψ((ijkl)

)
This shows that ˜̃Ψ((ijkl)

)
depends only on the subset {i, j} of Q. Hence Ψ̃

is well defined. Furthermore, it is easy to see that Ψ̃ is G-equivariant. �

Remark 2.3. It will be useful to calculate Ψ̃(t) for an arbitrary element
t ∈ ZR. Let t =

∑
r∈R tr · r, where tr ∈ Z for all r ∈ R. Then one has

Ψ̃

(∑
r∈R

tr · r

)
=
[
t{i,j} ·

(
[iljk] + [iklj] + [ijlk]

)
+ t{k,l} ·

(
[ikjl] + [ijlk] + [iklj]

)
− t{i,l} ·

(
[ijlk] + [ikjl] + [iljk]

)
− t{i,k} ·

(
[ilkj] + [ijlk] + [iklj]

)
− t{j,k} ·

(
[iklj] + [iljk] + [ikjl]

)
− t{j,l} ·

(
[ijkl] + [ijlk] + [iklj]

) ]
⊗ [〈ijkl〉]

=
[
− t{j,l} · [ijkl] +

(
t{i,j} − t{i,l} − t{j,k}

)
· [iljk] +

(
t{i,j} + t{k,l} − t{i,k}

− t{j,k} − t{j,l}
)
· [iklj] +

(
t{i,j} + t{k,l} − t{i,l} − t{i,k} − t{j,l}

)
· [ijlk]

+
(
t{k,l} − t{i,l} − t{j,k}

)
· [ikjl]− t{i,k} · [ilkj]

]
⊗ [〈ijkl〉]

Lemma 2.4. One has Ψ̃ ◦∆R
Z

= 0.

Proof. Using Remark 2.3, one finds

Ψ̃ ◦∆R
Z (1)

= Ψ̃
(∑

r∈R
1 · r

)
=
[
− [ijkl]− [iljk]− [iklj]− [ijlk]− [ikjl]− [ilkj]

]
⊗ [〈ijkl〉]

=
[
∆C
Z(−1)

]
⊗ [〈ijkl〉]

= 0

�

Corollary 2.5. Ψ̃ induces a homomorphism of G-modules

Ψ: ZR/∆(Z) −→
(
Z
C/∆(Z)

)
⊗Z Z(Q)

Proof. This follows immediately from Lemma 2.4 by the first group isomor-
phism theorem. �

Consider the augmentation map

ε : ZC −→ Z, given by
c 7−→ 1 for all c ∈ C
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Now consider the composition of ε with the projection pr onto Z/3Z

pr ◦ ε : ZC −→ Z/3Z
c 7−→ 1 + 3Z for all c ∈ C

One has ∆(Z) ⊂ Ker(pr ◦ ε), because

ε ◦∆C
Z(1) = 6 ≡ 0 mod 3

Thus pr ◦ ε factors through the projection ZC −→ ZC/∆(Z), which yields
the map

p̃r ◦ ε : ZC/∆(Z) −→ Z/3Z
We consider the tensor product of group homomorphisms

ε = p̃r ◦ ε⊗ idZ(Q)

and set
Z/3(Q) := (Z/3Z)⊗Z Z(Q)

Then one has

ε : ZC/∆(Z)⊗Z Z(Q) −→ Z/3(Q)[∑
c∈C

ac · c

]
⊗ t · [σ1] 7−→

(∑
c∈C

ac + 3Z

)
⊗ t · [σ1]

where ac ∈ Z for all c ∈ C, t ∈ Z and σ1 is an orientation of Q.
Z/3(Q) is a G-module via the G-action on Z(Q) and via the trivial action
on Z/3Z.

Theorem 2.6. The sequence

0 −→ Z
R/∆(Z) Ψ−→

(
Z
C/∆(Z)

)
⊗Z Z(Q) ε−→ Z/3(Q) −→ 0

is an exact sequence of G-modules.

Proof. We already know that the involved maps are homomorphisms of G-
modules. We begin by showing that ε is surjective. It is sufficient to show
that z = (1 + 3Z) ⊗ [σ1] lies in Im(ε). One easily observes that, for an
arbitrary c ∈ C, the element [c]⊗ [σ1] lies in ZC/∆(Z)⊗Z Z(Q) and

ε ([c]⊗ [σ1]) = (1 + 3Z)⊗ [σ1] = z

Now we shall prove the injectivity of Ψ by showing Ker(Ψ̃) = ∆(Z). Due to
Lemma 2.4, one has ∆(Z) ⊂ Ker(Ψ̃), whence it remains to show the other
inclusion. Let

∑
r∈R tr · r ∈ Ker(Ψ̃). Using Remark 2.3, one finds

0 = Ψ̃

(∑
r∈R

tr · r

)
=
[
− t{j,l} · [ijkl] +

(
t{i,j} − t{i,l} − t{j,k}

)
· [iljk] +

(
t{i,j} + t{k,l} − t{i,k}

− t{j,k} − t{j,l}
)
· [iklj] +

(
t{i,j} + t{k,l} − t{i,l} − t{i,k} − t{j,l}

)
· [ijlk]

+
(
t{k,l} − t{i,l} − t{j,k}

)
· [ikjl]− t{i,k} · [ilkj]

]
⊗ [〈ijkl〉]
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Since this identity holds in ZC/∆(Z)⊗Z Z(Q), it follows that

− t{j,l} = t{i,j} − t{i,l} − t{j,k} = t{i,j} + t{k,l} − t{i,k} − t{j,k} − t{j,l}

= t{i,j} + t{k,l} − t{i,l} − t{i,k} − t{j,l} = t{k,l} − t{i,l} − t{j,k} = −t{i,k}

Now easy calculations show tr = tr′ for all r, r′ ∈ R. Therefore
∑

r∈R tr · r
is an element of ∆(Z). It remains to show that the sequence is exact at
ZC/∆(Z)⊗Z Z(Q), i.e., Im(Ψ) = Ker(ε). Clearly, Im(Ψ) ⊂ Ker(ε), because
for all r ∈ R holds

ε ◦Ψ([r]) = (3 + 3Z)⊗ (±〈ijkl〉) = 0

In order to show Ker(ε) ⊂ Im(Ψ), let x ∈ Ker(ε). Then

x =
∑
j∈J

([∑
c∈C

ajc · c

]
⊗ tj [σ1]

)

where J is some finite set, σ1 = 〈ijkl〉, ajc ∈ Z for all j ∈ J and all c ∈ C,
and tj ∈ Z for all j ∈ J . One has

x =
∑
c∈C

∑
j∈J

tj · ajc

 · c

⊗ [σ1]

Since x ∈ Ker(ε), we find

0 = ε(x) =

∑
c∈C

∑
j∈J

tjajc + 3Z

⊗ [σ1]

Thus ∑
c∈C

∑
j∈j

tjajc ≡ 0 mod 3

whence there exists an element h ∈ Z with∑
c∈C

∑
j∈j

tjajc = 3h(14)

Set bc :=
∑

j∈J tjajc . We want to find an element y =
[∑

r∈R yr · r
]
∈

ZR/∆(Z) such that Ψ(y) = x. Solving the resulting system of linear equa-
tions for the yr, r ∈ R, yields

y{i,j} =
1
3

∑
c∈C\C′

bc −
2
3

∑
c∈C′

bc, y{k,l} =
1
3

∑
c∈C\C′′

bc −
2
3

∑
c∈C′′

bc,

y{i,l} = −1
3

∑
c∈C\{[iklj]}

bc +
2
3

b[iklj], y{j,k} = −1
3

∑
c∈C\{[ijlk]}

bc +
2
3

b[ijlk],

y{i,k} = −b[ilkj] ∈ Z and y{j,l} = −b[ijkl] ∈ Z

where C′ :=
{
[ikjl], [ilkj], [ijkl]

}
and C′′ :=

{
[iljk], [ilkj], [ijkl]

}
are subsets

of C. It remains to check that yr ∈ Z for all r ∈ R. This is easily obtained
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by using equation (14). One has

y{i,j} =
1
3

∑
c∈C

bc −
∑
c∈C′

bc = h−
∑
c∈C′

bc ∈ Z

y{k,l} =
1
3

∑
c∈C

bc −
∑
c∈C′′

bc = h−
∑
c∈C′′

bc ∈ Z

y{i,l} = −1
3

∑
c∈C

bc + b[iklj] = −h + b[iklj] ∈ Z

y{j,k} = −1
3

∑
c∈C

bc + b[ijlk] ∈ Z

Consequently, y =
[∑

r∈R yr · r
]

lies in ZR/∆(Z) with Ψ(y) = x, which
completes the proof. �

We want to use the previous result to establish an action of S6×{±1} on
ZR/∆(Z).

Define G := Aut(C), then G ∼= S6. Furthermore, G acts on ZC/∆(Z) (by
acting canonically on C), and we let it act trivially on Z(Q) and on Z/3(Q).
Thus we have an action of G on

(
ZC/∆(Z)

)
⊗Z Z(Q). Now one easily

observes that the map ε is G-equivariant, which yields the fact that Ker(ε)
is G-invariant. But due to Theorem 2.6, Ker(ε) = Im(Ψ) ∼= ZR/∆(Z). We
hence get an action of G on ZR/∆(Z).

Lemma 2.7. Consider the group homomorphism

g : G −→ G

τ 7−→ gτ

where gτ is induced by the natural action of G on C, namely

gτ ([ijkl]) = [τ(i)τ(j)τ(k)τ(l)]

for [ijkl] ∈ C. Then g is injective.

Proof. Let Q = {0, 1, 2, 3} and let τ ∈ Ker(g). Then gτ : C −→ C is the
identity map. One has

[0123] = gτ ([0123]) = [τ(0)τ(1)τ(2)τ(3)]

Thus τ(i) = i + k mod 4 for some k ∈ N. One finds

[0132] = gτ ([0132]) = [τ(0)τ(1)τ(3)τ(2)]

=
[
k 1 + k 3 + k 2 + k

]
where denotes the residue class mod 4.

If k ≡ 1 mod 4, then

[0132] = gτ ([0132]) = [1203] = [0312]

which is a contradiction. Similarly, if k ≡ 2 mod 4, one has

[0132] = gτ ([0132]) = [2310] = [0231]

This is a contradiction as well. Finally, for k ≡ 3 mod 4 follows

[0132] = gτ ([0132]) = [3021] = [0213]
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which is again a contradiction. Therefore one has k ≡ 0 mod 4, which shows
that τ = idG. This completes the proof. �

Define Ĝ := G×µ2, where µ2 = {±1}. Consider the group homomorphism

δ : G −→ Ĝ

τ 7−→
(
g(τ), sgn(τ)

)
where g : G −→ G is the map defined in Lemma 2.7.

In section 1.2 we embedded the set XQ of quadrangles up to affine auto-
morphisms into V = S1 ⊗Z

(
ZR/∆(Z)

)
=
(
S1
)R

/∆
(
S1
)
. Now we receive

an action of Ĝ on V via the action on ZR/∆(Z). Namely, for (η, ξ) ∈ Ĝ and
a decomposable tensor z ⊗

[∑
r∈R tr · r

]
∈ V , one has

(η, ξ) ·

(
z ⊗

[∑
r∈R

tr · r

])
= ξ · z ⊗

∑
r∈R

(
Ψ−1 (η ·Ψ([tr · r]))

)
(15)

The next lemma shows that the group homomorphism δ : G −→ Ĝ is
compatible with the injective map v : XQ −→ V (cf. p. 9).

Lemma 2.8. The map v is δ-equivariant, i.e., one has
v (τ · [x]) = δ(τ) · v ([x]) for all τ ∈ G and all [x] ∈ XQ.

Proof. The map

v : XQ −→ V ∼=
(
S1
)R

/∆
(
S1
)

[x] 7−→
[(

ûr(x)
)
r∈R

]
obviously is a G-map. Furthermore, the identity map on V is δ-equivariant.
For if z⊗

(∑
r∈R tr ·[r]

)
∈ V and τ ∈ G, then one finds the following identity

due to the G-equivariance of Ψ .

δ(τ) ·

(
z ⊗

(∑
r∈R

tr · [r]

))
= z ⊗

(∑
r∈R

tr ·Ψ−1
( (

gτ , sgn(τ)
)
·Ψ([r])

))

= z ⊗

(∑
r∈R

tr ·Ψ−1Ψ(τ · [r])

)

= z ⊗

(∑
r∈R

tr · (τ · [r])

)

= τ ·

(
z ⊗

(∑
r∈R

tr · [r]

))
Therefore one concludes

v(τ · [x]) = τ · v([x]) = δ(τ) · v([x])

for all [x] ∈ XQ and all τ ∈ G. �
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Lemma 2.9. The group homomorphism

δ : G −→ Ĝ

τ 7−→
(
g(τ), sgn(τ)

)
is injective. Hence Im(δ) ∼= S4.

Proof. This follows directly from Lemma 2.7. �

3. Interpretation of the S6-symmetry

There is the canonical action of Aut(Q) ∼= S4 on the set XQ of Q-
labeled quadrangles up to affine automorphisms, i.e., the permutations of
the points of a quadrangle. Besides this action, we established another ac-
tion on the subset Y Q of XQ induced by the pedal triangle construction
(cp. section 1.3). On the other hand, we found an action of S6 × µ2 on the
Z-module V =

(
S1
)R

/∆
(
S1
)

(cf. p. 23). V contains the set of XQ via the
injective map v : XQ −→ V (cf. Lemma 1.17). This section will show that
the two operations – permutations of the points of a quadrangle and the
pedal triangle construction – generate a group isomorphic to S6.

Theorem 3.1. Let Q = {0, i, j, k} and consider the pedal triangle construc-
tion φ0 : Y Q −→ Y Q (cf. Corollary 1.31). Then there exists an element
φ̂0 ∈ Ĝ = Aut(C)× µ2 with

v
(
φ0([x])

)
= φ̂0

(
v([x])

)
∀ [x] ∈ Y Q

This element is φ̂0 = (τ, 1), where

τ =
(

[i0jk] [ik0j] [ij0k] [ikj0] [i0kj] [ijk0]
[ijk0] [i0kj] [i0jk] [ik0j] [ikj0] [ij0k]

)
in the usual permutation notation.

Proof. It will be useful to consider the operation of φ̂0 on ZR/∆(Z). There-
fore we calculate φ̂0 · [s] for all s ∈ R, using Remark (2.3). One has

φ̂0 · [{i, j}] = Ψ−1
(
τ ·Ψ

(
[{i, j}]

))
= Ψ−1

(
τ ·
([

[i0jk] + [ik0j] + [ij0k]
]
⊗ [〈ijk0〉]

))
= Ψ−1

([
− [ik0j]− [ij0k]− [ikj0]

]
⊗ [〈ijk0〉]

)
=
[
− {k, 0}

]
φ̂0 · [{k, 0}] = Ψ−1

(
τ ·Ψ

(
[{k, 0}]

))
= Ψ−1

(
τ ·
([

[ikj0] + [ij0k] + [ik0j]
]
⊗ [〈ijk0〉]

))
= Ψ−1

([
[ik0j] + [i0jk] + [i0kj]

]
⊗ [〈ijk0〉]

)
=
[
− {k, 0} − {i, k} − {j, k}

]
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φ̂0 · [{i, 0}] = Ψ−1
(
τ ·Ψ

(
[{i, 0}]

))
= Ψ−1

(
τ ·
([

− [ij0k]− [ikj0]− [i0jk]
]
⊗ [〈ijk0〉]

))
= Ψ−1

([
− [i0jk]− [ik0j]− [ijk0]

]
⊗ [〈ijk0〉]

)
=
[
− {i, j} − {i, 0} − {i, k}

]
φ̂0 · [{i, k}] = Ψ−1

(
τ ·Ψ

(
[{i, k}]

))
= Ψ−1

(
τ ·
([

− [i0kj]− [ij0k]− [ik0j]
]
⊗ [〈ijk0〉]

))
= Ψ−1

([
[ijk0] + [ij0k] + [ik0j]

]
⊗ [〈ijk0〉]

)
=
[
− {j, 0}

]
=

∑
s∈R\{{j,0}}

[s]

φ̂0 · [{j, k}] = Ψ−1
(
τ ·Ψ

(
[{j, k}]

))
= Ψ−1

(
τ ·
([

− [ik0j]− [i0jk]− [ikj0]
]
⊗ [〈ijk0〉]

))
= Ψ−1

([
[i0jk] + [ij0k] + [ikj0]

]
⊗ [〈ijk0〉]

)
=
[
− {i, 0}

]
φ̂0 · [{j, 0}] = Ψ−1

(
τ ·Ψ

(
[{j, 0}]

))
= Ψ−1

(
τ ·
([

− [ijk0]− [ij0k]− [ik0j]
]
⊗ [〈ijk0〉]

))
= Ψ−1

([
− [ij0k]− [i0jk]− [i0kj]

]
⊗ [〈ijk0〉]

)
=
[
{i, k}+ {k, 0}+ {i, 0}

]
For [x] ∈ Y Q and τ defined as in the claim, one finds

v (φ0([x])) =
[
(ûs (φ0(x)))s∈R

]
=

∑
s∈R

ûs (φ0(x))⊗ [s]

=
∑

s∈R\{{0,j}}

ûs (φ0(x))⊗ [s] + û0j (φ0(x))⊗

 ∑
s∈R\{{0,j}}

−s


=

∑
s∈R\{{0,j}}

ûs (φ0(x))
û0j (φ0(x))

⊗ [s]

We know by equation 1.32(1) that certain relations hold between the double
angles of the triangle x and the double angles of its pedal triangle φ0(x).
Consider s = {i, j}. By equation 1.32(1), one has

α̂0ji

(
φ0(x)

)
= α̂0ik(x)
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Hence one has
ûij (φ0(x))
û0j (φ0(x))

=
ûik(x)
û0i(x)

Similarly, we express
ûs (φ0(x))
û0j (φ0(x))

for all s ∈ R \ {{j, 0}} in terms of the algebraic sides of the triangle x.
Inserting our calculations into the right-hand term of the equation above
yields

v
(
φ0([x])

)
=

ûik(x)
ûi0(x)

⊗
[
{i, j}

]
+

ûik(x)ûj0(x)
ûij(x)ûk0(x)

⊗
[
{k, 0}

]
+

ûik(x)ûj0(x)
ûi0(x)ûjk(x)

⊗
[
{i, 0}

]
+

ûik(x)ûj0(x)
ûk0(x)ûi0(x)

⊗
[
{i, k}

]
+

ûik(x)
ûk0(x)

⊗
[
{j, k}

]
= ûij(x)⊗

[
− {k, 0}

]
+ ûk0(x)⊗

[
− {k, 0} − {i, k} − {j, k}

]
+ ûi0(x)⊗

[
− {i, j} − {i, 0} − {i, k}

]
+ ûik(x)⊗

[
{i, j}+ {k, 0}+ {i, 0}+ {i, k}+ {j, k}

]
+ ûjk(x)⊗

[
− {i, 0}

]
+ ûj0(x)⊗

[
{k, 0}+ {i, 0}+ {i, k}

]
Finally, we make use of our calculations for φ̂0 · [s], s ∈ R, and get

v
(
φ0([x])

)
=
∑
s∈R

ûs(x)⊗
(
φ̂0 · [s]

)
= φ̂0 ·

(∑
s∈R

ûs(x)⊗ [s]

)
= φ̂0 ·

[
(ûs(x))s∈R

]
= φ̂0 · v([x])

�

Remark 3.2. Let f : {1, . . . , 6} −→ C be the bijection with f(1) = [i0jk],
f(2) = [ik0j], f(3) = [ij0k], f(4) = [ikj0], f(5) = [i0kj] and f(6) = [ijk0].
Under this bijection, one has

φ̂0 =
(
(163)(254), 1

)
written as a product of disjoint cycles.

Due to Lemma 2.9, the action on V induced by permuting the vertices of a
quadrangle is an action of S4 ⊂ Ĝ. Furthermore, we proved the existence of
an element φ̂0 ∈ Ĝ, whose operation on V corresponds to the pedal triangle
construction on the subset Y Q of XQ.
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Define
H =

{ (
g, sgn(g)

) ∣∣ g ∈ S6

}
Then H is a subgroup of S6 × µ2 that is obviously isomorphic to S6.

Theorem 3.3. We identify Ĝ with S6 × µ2 via the bijection f from Corol-
lary 3.2. Then the set Im(δ) and the element φ̂0 generate the group H ∼= S6.

Proof. Let Q = {i, j, k, 0}. The transpositions (ij), (jk) and (k0) generate
Aut(Q), whence their images under δ generate Im(δ). At first, we calculate
ω1 := δ((ij)), ω2 := δ((jk)) and ω3 := δ((k0)). Afterwards we show that
ω1, ω2, ω3 and φ̂0 generate the subgroup H.

For the transposition ω1 holds

ω1 =
(
g(ij), sgn((ij))

)
=
(
g(ij),−1

)
∈ Aut(C)× µ2

where g(ij)(c) = (ij) · c for c ∈ C. Hence

g(ij)

(
[i0jk]

)
= [j0ik] = [ikj0]

g(ij)

(
[ik0j]

)
= [jk0i] = [ijk0]

g(ij)

(
[ij0k]

)
= [ji0k] = [i0kj]

This shows that, under the bijection f , the automorphism g(ij) corresponds
to the element (14)(26)(35) in S6. Thus ω1 =

(
(14)(26)(35),−1

)
. Analo-

gously, one finds ω2 =
(
(15)(23)(46),−1

)
and ω3 =

(
(14)(25)(36),−1

)
. By

Corollary 3.2, we have φ̂0 =
(
(163)(254), 1

)
. Denote by H ′ the subgroup of

S6 × µ2 generated by these four elements. Since they are clearly contained
in H, one has H ′ ⊂ H. Now one easily checks that the following holds.

ω4 :=
(
(26),−1

)
=
(
ω3φ̂0

)2
ω1 ∈ H ′

ω5 :=
(
(35),−1

)
= ω3ω1ω4ω3ω1 ∈ H ′

ω6 :=
(
(14),−1

)
= ω3ω4ω3ω1ω4 ∈ H ′

ω7 :=
(
(45),−1

)
= (ω3ω2ω4)

2 ω5 ∈ H ′

ω8 :=
(
(24),−1

)
= ω7φ̂0ω2φ̂0ω1 ∈ H ′

ω9 :=
(
(25),−1

)
= ω8ω7ω8 ∈ H ′

ω10 :=
(
(12),−1

)
= ω6ω8ω6 ∈ H ′

ω11 :=
(
(34),−1

)
= ω5ω7ω5 ∈ H ′

ω12 :=
(
(23),−1

)
= ω11ω8ω11 ∈ H ′

ω13 :=
(
(56),−1

)
= ω4ω9ω4 ∈ H ′

Thus all elements
(
(r, r + 1),−1

)
, 1 6 r 6 5, are contained in H ′, which

proves H ′ = H. �

Corollary 3.4. The operations on Y Q given by
(1) permutations of the points of a Q-labeled quadrangle x
(2) the derived triangle construction relative to x0

generate a group isomorphic to S6.
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