Hilbert 90 for K_{3} for degree-two extensions

by Markus Rost

Regensburg, Mai 1986

In this paper* we consider Milnor K-theory of fields [Mi]. Let F be a field of characteristic different from 2 and let L be an extension of degree two with generator σ of $\operatorname{Gal}(L \mid F)$. The purpose of this paper is to prove

Theorem A

The sequence

$$
K_{3} L \xrightarrow{1-\sigma} K_{3} L \xrightarrow{N_{L \mid F}} K_{3} F
$$

is exact.
It is a consequence of this theorem that the Galois symbol $K_{3} F / 2 \rightarrow H^{3}(F, \mathbb{Z} / 2)$ is an isomorphism. This will be considered elsewhere.
As in the proof of Hilbert 90 for $K_{2}([\mathrm{Me}],[\mathrm{MS}])$, Theorem A follows from the exactness of a certain part of the localization sequence of a Severi-Brauer variety with respect to Milnor K-Theory. Let D be a quaternion algebra over F and let X be the (one-dimensional) Severi-Brauer variety associated to D. The basic results needed in the proof of Theorem A are the injectivity of the reduced norm Nrd : $K_{2} D \rightarrow K_{2} F([\mathrm{R} 1])$ and

Theorem B

The sequence

$$
K_{3} F(X) \rightarrow \bigoplus_{v \in X^{(1)}} K_{2} \kappa(v) \xrightarrow{\theta} K_{2} D \rightarrow 0
$$

is exact.
(Here v runs through the closed points of X. The homomorphism θ is induced by the natural map $\theta_{K}: K_{2} K \rightarrow K_{2} D$ for a splitting field K of D, finite over F; see [MS; § 1]).
Note that the corresponding statement for the K-Theory of Quillen follows from the computations $K_{2}(X)=K_{2} D \oplus K_{2} F$ and $H^{0}\left(X, \mathcal{K}_{2}\right)=K_{2} F([\mathrm{MS}])$.
The philosophy of our proof is that Theorem A together with the injectivity of the Galois symbol is equivalent to Theorem B together with the injectivity of Nrd : $K_{2} D \rightarrow K_{2} F$. Using Hilbert 90 for K_{2} it is not difficult to see that Theorem A holds for the universal Kummer extension of degree two of a pure transcendental extension F of a prime field (§ 1). We use this to show that Theorem B holds for a generic quaternion algebra D over $F(\S 3)$. To prove Theorem B in general we make use of Rehmann's description of $K_{2} D$ in

[^0]terms of generators and relations and do some specialization arguments using the results of $\S 3$ (Since I hope that it is possible to shorten some arguments, the proof of Theorem B given here is rather sketchy). Finally, in § 5 we show that Theorem B and the injectivity of $K_{2} D \rightarrow K_{2} F$ imply Theorem A.

§ 1 Hilbert 90 in a special case

The reader is assumed to be familiar with Milnor K-Theory of fields as defined in [Mi]. For the product $K_{1} K \otimes K_{n} K \rightarrow K_{n+1} K$ we use the notation $(x, u) \mapsto l(x) u=\{x, u\}$. For the rational function field $K(t)$ in one variable one has the exact sequence

$$
\begin{equation*}
0 \rightarrow K_{n} K \rightarrow K_{n} K(t) \xrightarrow{d} \bigoplus_{P \in \mathcal{P}_{K}} K_{n-1} K_{P} \rightarrow 0 \tag{1.0.1}
\end{equation*}
$$

Here P runs over the set \mathcal{P}_{K} of normed irreducible polynomials in t and $K_{P}=K[t] /(P)$ (see [Mi; Theorem 2.3]).
If $H \mid K$ is finite extension (H may be a field or a direct sum of field extensions $H_{i} \mid K$; in the latter case $K_{n} H=\oplus_{i} K_{n} H_{i}$ by definition), there is a restriction $\operatorname{res}_{H \mid K}: K_{n} K \rightarrow K_{n} H$ and a corestriction or norm homomorphism $\operatorname{cor}_{H \mid K}=N_{H \mid K}: K_{n} H \rightarrow K_{n} K$ (See [BT] for definition and $[\mathrm{K}]$ for uniqueness of the norm). One has the formulas

$$
\begin{array}{ll}
\operatorname{cor}_{H \mid K} \circ \operatorname{res}_{H \mid K}=[H: K] \\
\operatorname{cor}_{H \mid K}(\{u, v\})=\left\{\operatorname{cor}_{H \mid K}(u), v\right\} & \text { for } u \in K_{n} H, v \in K_{m} K \\
\operatorname{res}_{H \mid K} \circ \operatorname{cor}_{H \mid K}=\sum_{\sigma \in \operatorname{Gal}(H \mid K)} \quad \text { if } H \mid K \text { is normal. }
\end{array}
$$

If P is irreducible over K and if Q_{1}, \ldots, Q_{1} are the irreducible factors of P over H, one also has homomorphisms

$$
\oplus_{i} K_{n} H_{Q_{i}} \stackrel{\operatorname{res}_{H \mid K}}{\stackrel{\operatorname{cor}_{H \mid K}}{\rightleftarrows}} K_{n} K_{P}
$$

satisfying the above formulas. They fit into a commutative diagram

(see $[\mathrm{K}]$). Using this we construct an explicit section to d.

Lemma 1.1.

Let $u_{P} \in K_{n-1} K_{P}$ and let t_{P} be the residue class of t in K_{P}. Then

$$
u_{P}=d N_{K_{P}(t) \mid K(t)}\left(t-t_{P}, u_{P}\right)
$$

Proof

In order not to confuse the roles of K_{P} as residue class field and as base extension, let $\varphi: K_{P} \rightarrow H$ be an isomorphism over K. Then the statement reads as

$$
u_{P}=d N_{H(t) \mid K(t)}\left(\left\{t-\varphi\left(t_{P}\right), \varphi\left(u_{P}\right)\right\}\right)
$$

Note that the composition $K_{n-1} H \rightarrow K_{n-1} H_{\left(t-\varphi\left(t_{P}\right)\right)} \xrightarrow{\operatorname{cor}_{H \mid K}} K_{n-1} K_{P}$ is the isomorphism induced by the inverse of φ. Hence

$$
\begin{aligned}
d N_{H(t) \mid K(t)}\left(\left\{t-\varphi\left(t_{P}\right), \varphi\left(u_{P}\right)\right\}\right)= & \operatorname{cor}_{H \mid K} \circ d\left(\left\{t-\varphi\left(t_{P}\right), \varphi\left(u_{P}\right)\right\}\right) \\
& =\operatorname{cor}_{H \mid K}\left(\varphi\left(u_{P}\right) \bmod \left(t-\varphi\left(t_{P}\right)\right)\right)=u_{P} .
\end{aligned}
$$

qed.
Now let $F_{0} \neq \mathbb{Z} / 2$ be a prime field, let $F=F_{0}\left(a_{1}, \ldots, a_{n}, a\right)$ be pure transcendental over F_{0} and let $L=F(\sqrt{a})$. The generator of $\operatorname{Gal}(L \mid F)$ is denoted by σ.

Proposition 1.2.

The following sequences are exact

$$
\begin{gather*}
K_{3} L \xrightarrow{1-\sigma} K_{3} L \xrightarrow{N_{L \mid F}} K_{3} F \tag{1.2.1}\\
K_{2} F / 2 \xrightarrow{l(a)} K_{3} F / 2 \xrightarrow{\mathrm{res}_{L \mid F}} K_{3} L / 2 \tag{1.2.2}\\
K_{2} F \xrightarrow{l(-1)} K_{3} F \xrightarrow{2} K_{3} F \tag{1.2.3}\\
K_{3} F \oplus U_{F} \xrightarrow{\left(\operatorname{res}_{L \mid F}, l(\sqrt{a})\right)} K_{3} L \xrightarrow{1-\sigma} K_{3} L \tag{1.2.4}\\
\text { where } U_{F}=\operatorname{Ker}\left(K_{2} F \xrightarrow{l(-1)} K_{3} F\right)
\end{gather*}
$$

Proof (Sketch)

(1.2.1): One uses Hilbert 90 for K_{2} and (1.0.1) with respect to the variables a_{i} to reduce to the case $n=0$. Then, if $\alpha \in \operatorname{Ker} N_{F_{0}(\sqrt{a}) \mid F_{0}(a)}$, one uses again (1.0.1) for $F_{0}(\sqrt{a}) \mid F_{0}$ and $F_{0}(a) \mid F_{0}$ to show that there exist $\beta \in K_{3} F_{0}(\sqrt{a})$ such that $\alpha-(1-\sigma)(\beta) \in K_{3} F_{0}$. However $K_{3} F_{0}=0$ if F_{0} is finite and $K_{3} \mathbb{Q}=\mathbb{Z} / 2$ generated by $\{-1,-1,-1\}$, see [Mi]. In the latter case one has $\{-1,-1,-1\}=(1-\sigma)(\{\sqrt{a},-1,-1\})$.
(1.2.2) follows from the fact that the Galois symbol $K_{3} K / 2 \rightarrow H^{3}(K, \mathbb{Z} / 2)$ is an isomorphism for $K=F, L$ ([Mi; Lemma 6.2; Theorem 6.3]) and the corresponding exact sequence for Galois cohomology.
(1.2.3) can be derived from (1.2.1) in the same way as the corresponding result for K_{2} (see [MS, Lemma 10.4] or [S; Lemma 3]); one also uses Lemma 1.1.
(1.2.4) will be proved in detail.

Let $\alpha \in K_{3} L$ such that $\sigma(\alpha)=\alpha$. Since $\operatorname{res}_{L \mid F} \circ N_{L \mid F}(\alpha)=(1+\sigma)(\alpha) \in 2 K_{3} L$, (1.2.2) implies that

$$
N_{L \mid F}(\alpha)=\{a, \beta\}+2 \gamma
$$

for some $\beta \in K_{2} F, \gamma \in K_{3} F$. Replacing α by $\alpha-\operatorname{res}_{L \mid F}(\gamma)$ we may assume $\gamma=0$. Put $\alpha^{\prime}=\alpha-\{\sqrt{a}, \beta\}$. Then

$$
(1-\sigma)\left(\alpha^{\prime}\right)=-\{\sqrt{a}, \beta\}+\{-\sqrt{a}, \beta\}=\{-1, \beta\}
$$

On the other hand

$$
(1+\sigma)\left(\alpha^{\prime}\right)=\operatorname{res}_{L \mid F} \circ N_{L \mid F}\left(\alpha^{\prime}\right)=\operatorname{res}_{L \mid F}(\{a, \beta\}-\{-a, \beta\})=\{-1, \beta\}
$$

Hence $2 \alpha^{\prime}=0$ and (1.2.3) implies $\alpha^{\prime}=\{-1, \delta\}$ for some $\delta \in K_{2} L$. Since

$$
\{a, \beta\}=N_{L \mid F}(\alpha)=N_{L \mid F}\left(\alpha^{\prime}+\{\sqrt{a}, \beta\}\right)=\left\{-1, N_{L \mid F}(\delta)\right\}+\{-a, \beta\}
$$

we have $\beta^{\prime}=\beta+N_{L \mid F}(\delta) \in U_{F}$. These facts yield

$$
\begin{aligned}
\alpha=\{\sqrt{a}, \beta\}+\{-1, \delta\} & =\left\{\sqrt{a}, \beta^{\prime}\right\}-\{-\sqrt{a}, \delta\}-\{\sqrt{a}, \sigma(\delta)\} \\
& =\left\{\sqrt{a}, \beta^{\prime}\right\}-\operatorname{res}_{L \mid F} \circ N_{L \mid F}(\{-\sqrt{a}, \delta\}) .
\end{aligned}
$$

qed.

§ 2 Severi-Brauer Varieties

Let F be a field, $\operatorname{Char} F \neq 2$. For $a, b \in F^{*}$ let

$$
D=D(a, b)=<A, B \mid A^{2}=a, B^{2}=b, A B=-A B>
$$

The Severi-Brauer variety to the quaternion algebra D is isomorphic to the quadric hypersurface X in \mathbb{P}^{3} defined by $X_{1}^{2}-a X_{2}^{2}-b X_{3}^{2}=0$. It is well known that

$$
D \simeq M_{2}(F) \Longleftrightarrow X \simeq \mathbb{P}^{1} \Longleftrightarrow b \in N_{F(\sqrt{a}) \mid F}\left(F(\sqrt{a})^{*} \Longleftrightarrow\{a, b\} \in 2 K_{2} F\right.
$$

Now suppose $a \notin\left(F^{*}\right)^{2}$ and let $L=F(\sqrt{a})$. An explicit isomorphism $X_{L} \rightarrow \mathbb{P}_{L}^{1}$ is given by

$$
\begin{aligned}
& {\left[X_{1}: X_{2}: X_{3}\right] \longrightarrow\left[\left(X_{1}+\sqrt{a} X_{2}\right): X_{3}\right]=\left[b X_{3}:\left(X_{1}-\sqrt{a} X_{2}\right)\right] \text { with inverse }} \\
& {\left[S_{1}: S_{2}\right] \quad \longrightarrow\left[\sqrt{a}\left(S_{1}^{2}+b S_{2}^{2}\right):\left(S_{1}^{2}-b S_{2}\right): 2 \sqrt{a} S_{1} S_{2}\right]}
\end{aligned}
$$

The function $t=S_{1} / S_{2}$ is a generator of the function field of \mathbb{P}_{L}^{1}. In this paper we identify the function field $L(X)$ of X_{L} with $L(t)$ by means of the above isomorphism. Note that the action of $\operatorname{Gal}(L \mid F)$ is given by $t \rightarrow b / t$; in particular $N_{L(X) \mid F(X)}(t)=b$.

We have to use the following result of Merkur'ev and Suslin.

Proposition 2.1.

i) The sequence

$$
0 \longrightarrow K_{2} F \xrightarrow{d} K_{2} F(X) \longrightarrow \bigoplus_{v \in X^{(1)}} K_{1} \kappa(v) \xrightarrow{\theta} K_{1} D \longrightarrow 0
$$

is exact.
ii) For every $\alpha \in \bigoplus_{v \in X^{(1)}} K_{1} \kappa(v)$ there exist $v_{0} \in X^{(1)}$ of degree two and $\alpha_{0} \in K_{1} \kappa\left(v_{0}\right)$ such that $\alpha-\alpha_{0} \in \operatorname{Im} d$.
For i) see [MS] or [S; Proposition 3]. To prove ii) represent $\theta(\alpha)$ by $x \in D^{*}$. Let F_{x} be a maximal commutative subfield of D containing x. Now choose v_{0} such that $\kappa\left(v_{0}\right) \simeq F_{x}$ and take for α_{0} the element corresponding to x.
qed.

§ 3 Theorem B in a special case

Let $F_{0} \neq \mathbb{Z} / 2$ be a prime field and let $F / F_{0}\left(a_{1}, \ldots, a_{n}, a, b\right)$ be pure transcendental over F_{0}. Put $D=D(a, b)$ and let X be the Severi-Brauer variety corresponding to D. $L=F(\sqrt{a})$ is a splitting field of D.

Theorem 3.1. * The sequence

$$
K_{3} F(X) \xrightarrow{d} \underset{v \in X^{(1)}}{ } K_{2} \kappa(v) \xrightarrow{\mathcal{N}} K_{2} F
$$

is exact.
Here \mathcal{N} is induced by the norm for finite extensions. Since $\mathcal{N}=\operatorname{Nrd} \circ \theta$, Theorem 3.1 implies Theorem B in this case.
Note that, over L, the sequence of Theorem 3.1 reads as

$$
\begin{equation*}
K_{3} L(t) \xrightarrow{d} \bigoplus_{p \in \mathcal{P}_{L}} K_{2} L_{P} \oplus K_{2} \kappa\left(w_{\infty}\right) \xrightarrow{\mathcal{N}} K_{2} L \tag{3.1.1}
\end{equation*}
$$

under the identification $L(X)=L(t)$ of $\S 2\left(w_{\infty}\right.$ denotes the point of X_{L} defined by $t=\infty)$. Since $\kappa\left(w_{\infty}\right)=L$, the exactness of (3.1.1) is clear by the exactness of (1.0.1).

[^1]We have to consider the following commutative diagram

Here I have changed notation a little bit. v runs everywhere (!) over the closed points of $X, F_{v}=\kappa(v)$ is the residue field of v and $L_{v}=F_{v} \otimes_{F} L$.

Lemma 3.2

Let $\alpha \in \bigoplus_{v} K_{2} F_{v}$ such that $\mathcal{N}(\alpha)=0$. Then there exist $\beta \in K_{3} L(X)$ and $\gamma \in K_{3} L$ such that
i) $d_{L}(\beta)=\operatorname{res}_{L \mid F}(\alpha)$.
ii) $\operatorname{res}_{L(X) \mid L}(\gamma)=(1-\sigma)(\beta)$.
iii) $N_{L \mid F}(\gamma)=0$.

Proof

The exactness of (3.1.1) implies the existence of β such that i) holds. Since $d_{L} \circ(1-\sigma)(\beta)=$ $(1-\sigma) \circ d_{L}(\beta)=(1-\sigma) \circ \operatorname{res}_{L \mid F}(\sigma)=0$, there exist a (unique) $\gamma \in K_{3} L$ such that ii) holds. Note that $N_{L \mid F}(\gamma)$ depends only on α. However, to prove that indeed $N_{L \mid F}(\gamma)=0$ one constructs β more explicitly (I don't know a direct argument, because $K_{3} F \rightarrow K_{3} F(X)$ is not injective; e.g. $\{-1, a, b\}=0$ in $K_{3} F(X)$). I use the identification $X_{L} \simeq \mathbb{P}_{L}^{1}$ of $\S 2$. Let v_{∞} be the closed point of X which splits over L into the points w_{0}, w_{∞} given by $t=0$, $t=\infty$ respectively. Let us first assume that $\alpha=\left(\alpha_{v}\right)_{v} \in \bigoplus_{v \neq v_{\infty}} K_{2} F_{v}$. Denote by t_{v} the residue class of t in $L_{v}, v \neq v_{\infty}$. Put

$$
\beta=\sum_{v \neq v_{\infty}} N_{L_{v}(t) \mid L(t)}\left(\left\{t-t_{v}, \operatorname{res}_{L_{v} \mid F_{v}}\left(\alpha_{v}\right)\right\}\right)
$$

It is clear from Lemma 1.1 that i) holds. Since $\sigma(t)=b / t$ we also have $\sigma\left(t_{v}\right)=b / t_{v}$.

Hence

$$
\begin{aligned}
(1-\sigma)(\beta) & =\sum_{v \neq v_{\infty}} N_{L_{v}(t) \mid L(t)}\left(\left\{\frac{t-t_{v}}{\sigma(t)-\sigma\left(t_{v}\right)}, \operatorname{res}_{L_{v} \mid F_{v}}\left(\alpha_{v}\right)\right\}\right) \\
& =\sum_{v \neq v_{\infty}} N_{L_{v}(t) \mid L(t)}\left(\left\{\frac{t v}{b}, \operatorname{res}_{L_{v} \mid F_{v}}\left(\alpha_{v}\right)\right\}\right) \\
& =\sum_{v \neq v_{\infty}}\left\{\frac{-t}{b}, N_{L_{v} \mid F_{v}}\left(\alpha_{v}\right)\right\}+\operatorname{res}_{L(t) \mid L}(\gamma) \\
& =\left\{\frac{t}{b}, \operatorname{res}_{L \mid F} \circ \mathcal{N}(\alpha)\right\}+\operatorname{res}_{L(t) \mid L}(\gamma)
\end{aligned}
$$

where $\gamma=\sum_{v \neq v_{\infty}} N_{L_{v} \mid L}\left(\left\{t_{v}, \operatorname{res}_{L_{v} \mid F_{v}}\left(\alpha_{v}\right)\right\}\right)$. With this choice of γ ii) and iii) hold, since $\mathcal{N}(\alpha)=0$ and $N_{L \mid F}(\gamma)=\sum_{v} N_{F_{v} \mid F}\left\{b, \alpha_{v}\right\}=\{b, \mathcal{N}(\alpha)\}$.
For the general case it suffices to show $K_{2} F_{v_{\infty}} \subset \operatorname{Im} d_{F} \oplus \oplus_{v \neq v_{\infty}} K_{2} F_{v}$. Note that $\operatorname{cor}_{L \mid F}: K_{2} L_{v_{\infty}} \rightarrow K_{2} F_{v_{\infty}}$ induces an isomorphism $K_{2} \kappa\left(w_{\infty}\right) \rightarrow K_{2} F_{v_{\infty}}$. For $\alpha \in K_{2} F_{v_{\infty}}$ let $\alpha^{\prime} \in K_{2} \kappa\left(w_{\infty}\right)=K_{2} L$ such that $\operatorname{cor}_{L \mid F}\left(\alpha^{\prime}\right)=\alpha$. Now, if $f \in L(X)$ is any function having a zero at w_{∞} and no zero or pole at w_{0}, then
$\alpha-d_{F} \operatorname{cor}_{L(X) \mid F(X)}\{f, \alpha\} \in \bigoplus_{v \neq v_{\infty}} K_{2} F_{v}$.
qed.

Proof of Theorem 3.1.

For $\alpha \in \operatorname{Ker} \mathcal{N}$ we have to show $\alpha \in \operatorname{Im} d_{F}$. Let β and γ be as in Lemma 3.2. By (1.2.1) there exist $\beta^{\prime} \in K_{3} L$ such that $(1-\sigma)\left(\beta^{\prime}\right)=\gamma$. Replacing β by $\beta-\beta^{\prime}$ we may assume $(1-\sigma)(\beta)=0$. Hence, by $(1.2 .4), \beta=\operatorname{res}_{L(X) \mid F(X)}\left(\beta^{\prime \prime}\right)+\{\sqrt{a}, \delta\}$ for some $\beta^{\prime \prime} \in K_{3} F(X)$, $\delta \in U_{F(X)}$. (We can apply (1.2.4), since
$F(X)=$ qf $\left.F_{0}\left[a_{1}, \ldots, a_{n}, a, b, X_{1}, X_{2}\right] /\left(X_{1}^{2}-a X_{2}^{2}-b\right)=F_{0}\left(a_{1}, \ldots, a_{n}, a, X_{1}, X_{2}\right)\right)$. After replacing α by $\alpha-d_{F}\left(\beta^{\prime \prime}\right)$ and β by $\beta-\operatorname{res}_{L(X) \mid F(X)}\left(\beta^{\prime \prime}\right)$, we have the following situation
i) $d_{L}(\beta)=\operatorname{res}_{L \mid F}(\alpha)$.
ii) $\beta=\{\sqrt{a}, \delta\}, \delta \in K_{2} F(Y)$.
iii) $\{-1, \delta\}=0$ in $K_{3} F(Y)$.

Claim

There exist $\rho \in K_{2} L(X)$ such that $\operatorname{cor}_{L \mid F} \circ d_{L}(\rho)=d_{F}(\delta)$.

Proof

Since

$$
\begin{aligned}
\left\{a, d_{F}(\delta)\right\} & =d_{F}(\{a, \delta\})=d_{F}(\{-a, \delta\})=d_{F} \circ N_{L(X) \mid F(X)}(\beta) \\
& =\operatorname{cor}_{L \mid F} \circ d_{L}(\beta)=\operatorname{cor}_{L \mid F} \circ \operatorname{res}_{L \mid F}(\alpha)=2 \alpha
\end{aligned}
$$

there exist $\mu \in \bigoplus_{v} K_{1} L_{v}$ such that $\operatorname{cor}_{L \mid F}(\mu)=d_{F}(\delta)$.
(use the general fact: $\{a, b\} \in 2 K_{2} K \Longleftrightarrow b \in N_{K(\sqrt{a}) \mid K}\left(K(\sqrt{a})^{*}\right)$).
We now alter μ such that $\mathcal{N}(\mu)=0$, i.e., $\mu \in \operatorname{Im} d_{L}$. Since $N_{L \mid F} \circ \mathcal{N}(\mu)=\mathcal{N} \circ d_{F}(\delta)=0$, there exist by Hilbert $90 \lambda \in K_{1} L$ such that $(1-\sigma)(\lambda)=\mathcal{N}(\mu)$. Let w be a rational point of X_{L}; the residue class field $\kappa(w)$ is a direct factor of L_{v} for some closed point v of X. Let $\varphi: L \rightarrow \kappa(w)$ be the natural isomorphism and put $\mu^{\prime}=\mu-(1-\sigma)(\varphi(\lambda)) \in \oplus_{v} K_{1} L_{v}$. Then $\mathcal{N}\left(\mu^{\prime}\right)=\mathcal{N}(\mu)-(1-\sigma)(\lambda)=0$, so there exist $\rho \in K_{2} L(X)$ such that $d_{L}(\rho)=\mu^{\prime}$. The claim follows by

$$
\operatorname{cor}_{L \mid F} \circ d_{L}(\rho)=\operatorname{cor}_{L \mid F}(\mu-(1-\sigma)(\varphi(\lambda)))=\operatorname{cor}_{L \mid F}(\mu)=d_{F}(\delta) .
$$

We continue the proof of Theorem 3.1.
Let $\alpha^{\prime}=\alpha-d_{F} \circ N_{L(X) \mid F(X)}(\sqrt{a}, \rho)$. Since

$$
\begin{aligned}
2 \alpha=\left\{a, d_{F}(\delta)\right\} & =\left\{a, \operatorname{cor}_{L \mid F} \circ d_{L}(\rho)\right\}=d_{F} \circ N_{L(X) \mid F(X)}\{a, \rho\} \\
& =2 d_{F} \circ N_{L(X) \mid F(X)}(\{\sqrt{ } a, \rho\})
\end{aligned}
$$

we have $2 \alpha^{\prime}=0$. The analogue to (1.2.3) for $K_{2}\left(\left[\right.\right.$ MS, Lemma 10.4]) implies $\alpha^{\prime}=\{-1, \xi\}$ for some $\xi \oplus_{v} K_{1} F_{v}$. By Proposition 2.1 ii) there exist a closed point $v \in X$ of degree two, $\xi_{0} \in K_{1} F_{v}$ and $\eta \in K_{2} F(X)$ such that $d_{F} \eta=\xi-\xi_{0}$. Then

$$
\alpha=\left\{-1, \xi_{0}\right\}+d_{F}\left(N_{L(X) \mid F(X)}(\{\sqrt{a}, \rho\})+\{-1, \eta\}\right)
$$

Hence we may assume that α is concentrated in some point v of X of degree two, i.e., $\alpha \in K_{2} F_{v}$. Let ε be the generator of $\operatorname{Gal}\left(F_{v} \mid F\right)$. Since $N_{F_{v} \mid F}(\alpha)=\mathcal{N}(\alpha)=0$, Hilbert 90 for K_{2} implies $\alpha=(1-\varepsilon)(\lambda)$ for some $\lambda \in K_{2} F_{v}$. We consider the base extension $F \rightarrow F^{\prime}$, where $F^{\prime} \mid F$ is isomorphic to $F_{v} \mid F$. Let ε^{\prime} be the generator of $\operatorname{Gal}\left(F^{\prime} \mid F\right)$ and let v_{0} and $v_{1}=\varepsilon^{\prime}\left(v_{0}\right)$ be the points over v. Moreover let $\varphi_{i}: F_{v}=F^{\prime} \rightarrow \kappa\left(v_{i}\right)$ be the natural identification. If we put $x=\varphi_{0}(\lambda)-\varphi_{1}(\lambda) \in \oplus_{v} K_{2} F_{v}^{\prime}$. then $\operatorname{cor}_{F^{\prime} \mid F}(x)=(1-\varepsilon)(\lambda)=\alpha$. Now take $y \in K_{3} F^{\prime}(X)$ such that $d_{F^{\prime}}(y)=x$; this is possible since D is split over F^{\prime} and $\mathcal{N}(x)=0$. Then $\alpha=\operatorname{cor}_{F^{\prime} \mid F}(x)=d_{F} \circ N_{F^{\prime}(X) \mid F(X)}(y) \in \operatorname{Im} d_{F}$ qed.

§ 4 Proof of Theorem B (Sketch)

The hard point in the proof of Theorem B is

Theorem 4.1.

If $\alpha \in \bigoplus_{\substack{v \in X^{(1)} \\ \operatorname{deg} v=2}} K_{2} \kappa(v)$ and $\theta(\alpha)=0$, then $\alpha \in \operatorname{Im} d$.
The general case is covered by the following two lemmas

Lemma 4.2

Every element of $\operatorname{Ker} \theta / \operatorname{Im} d$ is of order 2 .
This follows by adjoining a splitting field of D of degree two and the usual transfer arguments. So we may assume that F has no extension of odd degree.

Lemma 4.3

If F has no extension of odd degree, then

$$
\bigoplus_{\substack{v \in X^{(1)} \\ \operatorname{deg} v>2}} K_{2} \kappa(v) \subset \operatorname{Im} d+\bigoplus_{\substack{v \in X^{(1)} \\ \operatorname{deg} v=2}} K_{2} \kappa(v) .
$$

The proof is similar to that of the K_{1}-case in [R2].

In the following we use the notation of $[\mathrm{Re}]$. One has an exact sequence

$$
1 \rightarrow K_{2} D \rightarrow U_{D} \xrightarrow{\pi}\left[D^{*}, D^{*}\right] \rightarrow 1
$$

where U_{D} is generated by elements $c(x, y), x, y \in D^{*}$ and $\pi(c(x, y))=[x, y]$.
Now choose maps $\psi_{0}, \psi_{1}:\left[D^{*}, D^{*}\right] \rightarrow D^{*}$ such that $\left[\psi_{0}(x), \psi_{1}(x)\right]=x$ and $\psi_{i}(1)=1$. The defining relations for the $c(u, v)$ in [Re] and the Reidemeister-Schreier method [MKS] yield the following representation of $K_{2} D$.

Lemma 4.4

$K_{2} D$ is generated by the elements

$$
\begin{gathered}
d(u ; x, y)=c\left(\psi_{0}(u), \psi_{1}(u)\right) \cdot c(x, y) \cdot c\left(\psi_{0}(u[x, y]), \psi_{1}(u[x, y])\right)^{-1} \\
u \in\left[D^{*}, D^{*}\right], x, y \in D^{*}
\end{gathered}
$$

with the following set of defining relations:

$$
\begin{array}{ll}
R_{0}(u, x) & d(u ; x, 1-x)=1 \\
R_{1}(u, x, y, z) & d(u ; x y, z)=d\left(u ; x y x^{-1}, x z x^{-1}\right) \cdot d\left(u x[y, z] x^{-1} ; x, z\right) \\
R_{2}(u, x, y, z) & d(u ; x, y z) \cdot d(u[x, y z] ; y, z x) \cdot d(u[x y, z] ; z, x y)=1 \\
R_{3}(u) & d\left(1 ; \psi_{0}(u), \psi_{1}(u)\right)=1
\end{array}
$$

Let

$$
\begin{aligned}
H_{D}=\left\langle h(x, y) ; x, y \in D^{*},[x, y]=1\right| & h(x, 1-x)=1
\end{aligned} ;
$$

There is a natural map $\mu: H_{D} \rightarrow K_{2} D$, sending $h(x, y)$ to $c(x, y)=d(1 ; x, y)$. By $[\mathrm{RS} ; \S 4] \mu$ is surjective. Note that $[x, y]=1$ implies that x and y are contained in a maximal commutative subfield of D which is unique if $x \notin F^{*}$ or $y \notin F^{*}$.
There is a bijection
$v:\{$ maximal commutative subfields of $D\} \stackrel{\approx}{\rightarrow}\{$ closed points of X of degree 2$\}$,
such that $\kappa(v(L)) \simeq L$.
Let $\Omega_{D}=\oplus_{\operatorname{deg} v=2} K_{2} \kappa(v) / \operatorname{Im} d$. One defines an homomorphism $\phi: H_{D} \rightarrow \Omega_{D}$ by $\phi(h(x, y))=\{x, y\} \in K_{2} \kappa(v(L)) \bmod \operatorname{Im} d$, where $L \subset D$ is a maximal commutative subfield containing x and y. It turns out that ϕ is well defined, surjective and that $\theta \circ \phi=\mu$. (I can show that ϕ is also injective, at least if F has no extension of odd degree. Theorem B then implies $H_{D} \cong K_{2} D$. So we have a commutative diagram

To prove Theorem 4.1 we construct a surjective section s as follows. For every generator $d(u ; x, y)$ choose a preimage $g(u ; x, y) \in H_{D}$. Now put $s(d(u ; x, y))=\phi(g(u ; x, y))$. The problem is of course to show that s is well defined. (To guarantee surjectivity of s one takes $g(1 ; x, y)=h(x, y)$ if $[x, y]=1)$. In any case one gets an homomorphism $s^{\prime}: G_{D} \rightarrow \Omega_{D}$, where G_{D} is the free group generated by the $d(u ; x, y)$. To show that s^{\prime} vanishes on the relations of Lemma 4.4. one has to be very careful in the choice of ψ_{0}, ψ_{1} and the $g(u, x, y)$. For a certain specific choice of s^{\prime} (I don't see another way than to give explicit formulas using the method of proof of [RS; Proposition 4.1]) one shows:

Lemma

For every $u \in\left[D^{*}, D^{*}\right] ; x, y, z \in D^{*}$ there exist
i) a rational function field $F_{0}\left(\bar{a}_{1}, \ldots \bar{a}_{n}, \bar{a}, \bar{b}\right)$ over the prime field F_{0} of F.
ii) elements $\bar{u} \in\left[\bar{D}^{*}, \bar{D}^{*}\right] ; \bar{x}, \bar{y}, \bar{z} \in \bar{D}^{*}$, where $\bar{D}=D(\bar{a}, \bar{b})$
iii) maps $\bar{\psi}_{0}, \bar{\psi}_{1}:\left[\bar{D}^{*}, \bar{D}^{*}\right] \rightarrow \bar{D}^{*}$ and an homomorphism $\bar{s}: G_{\bar{D}} \rightarrow \Omega_{\bar{D}}$ with the corresponding properties as ψ_{0}, ψ_{1} and s^{\prime}.
iv) a specialization $\rho: F\left[\bar{a}_{1}, \ldots, \bar{a}_{n}, \bar{a}, \bar{b}\right] \rightarrow F$ such that $\rho(\bar{a})=a, \rho(\bar{b})=b, \rho(\bar{u})=u$, $\rho(\bar{x})=x, \rho(\bar{y})=y, \rho(\bar{z})=z$.
v) a diagram of homomorphisms

which is commutative at least on the elements $d(. ;, .$,$) which occur in the relations$ $R_{0}(\bar{u}, \bar{x}), R_{1}(\bar{u}, \bar{x}, \bar{y}, \bar{z})$ etc., that is $d(\bar{u}, \bar{x}, 1-\bar{x}), d(\bar{u}, \bar{x} \bar{y}, \bar{z})$ etc.
Using this lemma one argues as follows:
By Theorem $3.1 \bar{s}^{\prime}$ vanishes on the relations for $K_{2} \bar{D}$; in particular $\bar{s}^{\prime}\left(R_{0}(\bar{u} ; \bar{x})\right)=0$, $\bar{s}^{\prime}\left(R_{1}(\bar{u} ; \bar{x}, \bar{y}, \bar{z})=0\right.$, etc. Then v) shows $s^{\prime}\left(R_{0}(u, x)\right)=0, s^{\prime}\left(R_{1}(u, x, y, z)\right)=0$ etc., which is the desired conclusion.

§ 5 Proof of Hilbert 90 (Theorem A)

Theorem B and the injectivity of the reduced norm Nrd : $K_{2} D \rightarrow K_{2} F$ (see [R2]) yield:

Theorem 5.1

The sequence

$$
K_{3} F(X) \xrightarrow{d} \bigoplus_{v \in X^{(1)}} K_{2} \kappa(v) \xrightarrow{\mathcal{N}} K_{2} F
$$

is exact.
We have to generalize this theorem to a product of Severi-Brauer varieties. Let X_{1}, \ldots, X_{n} be a family of Severi-Brauer varieties over F of dimension 1. Put $X=X_{1} \times \ldots \times X_{n}$ and $\hat{X}_{i}=X_{1} \times \ldots \times X_{i-1} \times X_{i+1} \times \ldots \times X_{n}$. Let \bar{X}_{i} be the fiber over the generic point of \hat{X}_{i} with respect to the natural projection. \bar{X}_{i} is a Severi-Brauer variety over the function field $F\left(\hat{X}_{i}\right)$; thus we have an exact sequence as in Theorem 5.1:

$$
K_{3} F\left(\bar{X}_{i}\right) \xrightarrow{d} \bigoplus_{v \in \bar{X}_{i}^{(1)}} K_{2} \kappa(v) \xrightarrow{\mathcal{N}_{i}} K_{2} F\left(\hat{X}_{i}\right) .
$$

We have $\bar{X}_{i}^{(1)} \subset X^{(1)}$ and a bijection $X^{(1)} \backslash \bar{X}_{i}^{(1)} \rightarrow \hat{X}_{i}^{(1)}$ induced by projection. Therefore

$$
\bigoplus_{v \in X^{(1)}} K_{2} \kappa(v)=\bigoplus_{v \in \bar{X}_{i}^{(1)}} K_{2} \kappa(v) \oplus \bigoplus_{v \hat{X}_{i}^{(1)}} K_{2}\left(\kappa\left(X_{i} \times_{F} \kappa(v)\right)\right) .
$$

Let $\pi_{i}: \oplus_{v \in X^{(1)}} K_{2} \kappa(v) \rightarrow \bigoplus_{v \in \bar{X}_{i}^{(1)}} K_{2} \kappa(v)$ be the corresponding projection. Put $N_{i}=\mathcal{N}_{i} \circ \pi_{i}$.

Corollary 5.2.

The sequence

$$
K_{3} F(X) \xrightarrow{d} \bigoplus_{v \in X^{(1)}} K_{2} \kappa(v) \xrightarrow{\left(d^{\prime}, \oplus N_{i}\right)} \bigoplus_{v \in X^{(2)}} K_{1} \kappa(v) \oplus \bigoplus_{i=1}^{n} K_{2} F\left(\hat{X}_{i}\right)
$$

is exact.

Proof

If $n=1$ this is Theorem 5.1. For an induction proof let us denote $X=X^{n}, \bar{X}_{i}=\bar{X}_{i}^{n}$ and $N_{i}=N_{i}^{n}$ to make clear the dependency on $n(i \leq n)$. Consider the commutative diagram

Note that $X^{n-1}=\hat{X}_{n}$. The homomorphisms denoted by f and g are injective by Proposition 2.1. i).
Now let $\alpha \in \oplus_{v \in\left(X^{n}\right)^{(1)}} K_{2} \kappa(v)$ such that $d^{\prime}(\alpha)=0$ and $N_{i}^{n}(\alpha)=0$; we have to show $\alpha \in \operatorname{Im} d+\operatorname{Im} f$. Since $\mathcal{N}_{n} \circ \pi_{n}(\alpha)=0$ and the lower sequence is exact, there is a $\beta \in K_{3} F\left(X^{n}\right)$ such that $\pi_{n}(\alpha-d(\beta))=0$. So we may assume $\pi_{n}(\alpha)=0$, that is

$$
\alpha \in \bigoplus_{v \in\left(X^{n-1}\right)^{(1)}} K_{2} \kappa\left(X_{n} \times_{F} \kappa(v)\right) .
$$

The homomorphism d^{\prime} in the middle row can be written as

$$
? \oplus \bigoplus_{v \in\left(X^{n-1}\right)^{(1)}} K_{2} \kappa\left(X_{n} \times_{F} \kappa(v)\right) \xrightarrow{d^{\prime}} \bigoplus_{v^{\prime} \in X_{n}^{(1)}, v \in\left(X^{n-1}\right)^{(1)}} K_{1} \kappa\left(v^{\prime} \times v\right) \oplus ?
$$

Hence $d^{\prime}(\alpha)=0$ and Proposition 2.1. i) imply

$$
\alpha \in \bigoplus_{v \in\left(X^{n-1}\right)^{(1)}} K_{2} \kappa(v)=\operatorname{Im} f .
$$

qed.
Now we are ready to start the proof of Hilbert 90.

Lemma 5.3

Let $\alpha \in K_{3} L$ such that $N_{L \mid F}(\alpha)=0$. Then there exist $r, n, m, p_{i j} \in \mathbb{N}, b_{i} \in F^{*}, \alpha_{i} \in K_{2} L$, $c_{j} \in F^{*} \quad(0 \leq i \leq n, 1 \leq j \leq m)$ and $\rho \in K_{2} F$ such that
i) $\alpha=\sum_{i}\left\{b_{i}, \alpha_{i}\right\}$
ii) $b_{0}^{r}=1$
iii) $N_{L \mid F}\left(\alpha_{0}\right)=\sum_{j} p_{0 j}\left\{1-d_{j}, c_{j}\right\}+r \rho$,
$N_{L \mid F}\left(\alpha_{i}\right)=\sum_{j} p_{i j}\left\{1-d_{j}, c_{j}\right\}, i \geq 1$ where $d_{j}=\pi_{i} b_{i}^{p_{i j}}$.

The proof is completely analogous to that of [MS; Lemma 13.3].
Let X_{i} be the Severi-Brauer variety associated to $D\left(a, b_{i}\right)$ and let $X=X_{1} \times \ldots \times X_{n}$. $L(X)$ denotes the function field of X_{L}.

Lemma 5.4

There exist $\beta \in K_{3} L(X)$ and $\gamma \in \bigoplus_{v \in X^{(1)}} K_{2} \kappa(v)$ such that
i) $\operatorname{res}_{L(X) \mid L}(\alpha)=(1-\sigma)(\beta)$.
ii) $d \beta=\operatorname{res}_{L \mid F}(\gamma)$
iii) $\left(d^{\prime}, \oplus N_{i}\right)(\gamma)=0$.

Suppose the lemma holds. Then, by iii) and Corollary 5.2, we have $\gamma=d(\delta)$ for some $\delta \in K_{3} F(X)$. Put $\beta^{\prime}=\beta-\operatorname{res}_{L(X) \mid F(X)}(\delta)$. Then ii) implies $d \beta^{\prime}=0$, i.e., $\beta^{\prime} \in K_{3} L$ and i) yields $\alpha=(1-\sigma)\left(\beta^{\prime}\right) \in(1-\sigma)\left(K_{3} L\right)$, which was to be shown.

Proof of Lemma 5.4

We identify $L\left(X_{i}\right)$ with $L\left(t_{i}\right)$ as in $\S 2$; then $L(X)=L\left(t_{1}, \ldots, t_{n}\right)$. Moreover $\sigma\left(t_{i}\right)=b_{i} / t_{i}$, hence $N_{L(X) \mid F(X)}\left(t_{i}\right)=b_{i}$. Put $s_{j}=\prod_{i} t^{p_{i j}}$; then $N_{L(X) \mid F(X)}\left(s_{j}\right)=d_{j}$. Let $F_{j}=F\left[x_{j}\right] /$ $\left(x_{j}^{2}-d_{j}\right)$ and $L_{j}=F_{j} \otimes_{F} L$.
We have

$$
\begin{aligned}
\alpha & =\sum_{i}\left\{b_{i}, \alpha_{i}\right\}=\sum_{i}\left\{t_{i}, N_{L \mid F}\left(\alpha_{i}\right)\right\}-(1-\sigma) \sum_{i}\left\{t_{i}, \sigma\left(\alpha_{i}\right)\right\} \\
& =\sum_{j}\left\{s_{j}, 1-d_{j}, c_{j}\right\}+\left\{t_{0}^{r}, \rho\right\}-(1-\sigma) \sum_{i}\left\{t_{i}, \sigma\left(\alpha_{i}\right)\right\}
\end{aligned}
$$

by Lemma 5.3. Put

$$
\beta=\sum_{j} N_{L_{j}(X) \mid L(X)}\left\{x_{j}+s_{j}, 1-x_{j}, c_{j}\right\}+\left\{1+t_{0}^{r}, \rho\right\}-\sum_{i}\left\{t_{i}, \sigma\left(\alpha_{i}\right)\right\} .
$$

Then $\alpha=(1-\sigma)(\beta)$, since

$$
\begin{aligned}
& N_{L_{j}(X) \mid L(X)} \circ(1-\sigma)\left(\left\{x_{j}+s_{j}, 1-x_{j}\right\}\right)=N_{L_{j}(X) \mid L(X)}\left(\left\{\frac{s_{j}}{x_{j}}, 1-x_{j}\right\}\right)= \\
& =\left\{s_{j}, N_{F_{j} \mid F}\left(1-x_{j}\right)\right\}=\left\{s_{j}, 1-d_{j}\right\} \quad \text { and } \quad N_{L(X) \mid F(X)}\left(t_{0}^{r}\right)=b_{0}^{r}=1 .
\end{aligned}
$$

Denote by $P_{i}, P_{i}^{\prime} \in \bigoplus_{w \in X_{L}^{(1)}} K_{0} \kappa(w)$ the canonical generators of $K_{0} \kappa\left(\left\{t_{i}=0\right\}\right)$,
$K_{0} \kappa\left(\left\{t_{i}=\infty\right\}\right)$, respectively; in particular $d\left(t_{i}\right)=P_{i}-P_{i}^{\prime}$. Define $R_{0} \in \bigoplus_{w \in X_{L}^{(1)}} K_{0} \kappa(w)$ and $Q_{j} \in \bigoplus_{w \in X_{L_{j}}^{(1)}} K_{0} \kappa(w)$ by

$$
\begin{aligned}
& d\left(1+t_{0}^{r}\right)=R_{0}-r P_{0}^{\prime} \\
& d\left(x_{j}+s_{j}\right)=Q_{j}-\sum_{i} p_{i j} \operatorname{res}_{L_{j} \mid L}\left(P_{j}^{\prime}\right)
\end{aligned}
$$

A little calculation shows

$$
d \beta=\sum_{j} \operatorname{cor}_{L_{j} \mid L}\left(\left\{1-x_{j}, c_{j}\right\} \cdot Q_{j}\right)+\rho R_{0}-\sum_{i}\left(\sigma\left(\alpha_{i}\right) P_{i}+\alpha_{i} P_{i}^{\prime}\right)
$$

Note that $\sigma\left(P_{i}\right)=P_{i}^{\prime}, \sigma\left(R_{0}\right)=R_{0}$ and $\sigma\left(Q_{j}\right)=Q_{j}$. In particular $R_{0} \in \bigoplus_{v \in X^{(1)}} K_{0} \kappa(w)$
and $Q_{j} \in \bigoplus_{v \in X_{F_{j}}^{(1)}} K_{0} \kappa(w)$. Therefore $d \beta=\operatorname{res}_{L \mid F}(\gamma)$, where

$$
\gamma=\sum_{j} \operatorname{cor}_{F_{j} \mid F}\left(\left\{1-x_{j}, c_{j}\right\} \cdot Q_{j}\right)+\rho R_{0}-\operatorname{cor}_{L \mid F}\left(\sum_{i} \alpha_{i} P_{i}^{\prime}\right) \in \bigoplus_{v \in X^{(1)}} K_{2} \kappa(v) .
$$

It is straight forward to verify iii) for this choice of γ.
qed.

Bibliography

[BT] Bass, H.; Tate, J.: The Milnor ring of a global field, Algebraic K-theory II, Springer, Lecture Notes in Mathematics 342 (1973), 349-446.
[K] Kato, K.: The norm homomorphism of Milnor's K-group.
[Mi] Milnor, J.: Algebraic K-Theory and Quadratic Forms, Invent. math. 9, 318-344, 1970.
[Me] Merkur'ev, A.S.: K_{2} of fields and the Brauer group. Proceedings of the Boulder Conference on K-Theory, 1983.
[MKS] Magnus, W.; Karras, A.; Solitar, D.: Combinatorial group theory, Dover Publications Inc., New York, 1976.
[MS] Merkur'ev, A.S.; Suslin, A.A.: K-Cohomology of Severi-Brauer varieties and the norm residue homomorphism. Izv. Akad. Nauk SSSR 46, 1982, 1011-1046.
[R1] Rost, M.: Injectivity of $K_{2} D \rightarrow K_{2} F$ for quaternion algebras; in preparation.
[R2] Rost, M.: $S K_{1}$ of some nonsingular quadrics; in preparation.
[S] Soulè, C.: K_{2} et le Groupe de Brauer, Sem. Bourbaki, 1982/83, no. 601, 79-93.
[Re] Rehmann, U.: Zentrale Erweiterungen der speziellen linearen Gruppe eines Schiefkörpers, J. Reine Angew. Mathematik, 301, 77-104 (1978).
[RS] Rehmann, U:; Stuhler, U: On K_{2} of finite dimensional division algebras over arithmetical fields, Inv. Math. 50, 75-90, (1978).

Fakultät für Mathematik
Universität Regensburg
Universitätsstr. 31
D-93040 Regensburg

[^0]: * This is a TEXed version (Sept. 1996) of the original preprint.

[^1]: * There is a simpler proof of Theorem 3.1 than the one given here: One has to compare the sequence of Theorem 3.1 via Galois symbol (which is an isomorphism for $F(X)$, see the proof of 3.1) with the spectral sequence for Galois cohomology associated to the field extension $F(X) \mid F$.

