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Pre-Preface 2022

Meanwhile (2021-2022) I have understood things better. For instance, the word
“strict” is entirely unnecessary: Definitions 1 and 2 just yield bi-cocommutatve
resp. cocommutatve Hopf algebras in the usual sense.

I hope to replace this text at some time.

Preface

This is an outline. The two sections are introductory and can be read in any
order.

Date: March 12, 2019.
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Introduction

Let V be a locally free R-module V over a ring R and consider the exterior
algebra H = Λ•V . The multiplication µ, comultiplication ∆ and antipode S of H
together with some standard rules establishes it as a Hopf algebra (commutative
and cocommutative in the graded sense).

It seems that many general considerations on the exterior algebra are formal
consequences of its structure as a Hopf algebra, together with its grading.

The examples we have in mind are general treatments of the Caley-Hamilton
theorem and of Schur functors. We hope to consider these things elsewhere.

To formalize properties of Λ•V and some proofs, an obvious idea is to work
in the framework of “bicommutative graded Hopf algebras in the category of R-
modules” or “commutative group objects in the category of cocommutative graded
R-coalgebras” (or the other way round). However for our purposes we didn’t find
that very enlightening. First, for the tensor product of graded R-modules there are
two involutions, the signed one (which is part of the Hopf algebra structure) and
the unsigned one (which is not part of the Hopf algebra structure and which we
don’t use). Second, we are considering a variety of combinations of S, µ,∆ and the
signed involution τ . Two work effectively with such combinations, it is convenient
to describe them with integral matrices.

So far we came up with a very general definition (Definition 1 in Section 1).
This definition facilitates in some basic cases to establish an object as a Hopf

algebra. Examples are the exterior algebra Λ•V and the rings H of commutative
affine algebraic groups G = SpecH. In both examples it becomes a 1-liner to
identify them as Hopf algebras as in Definition 1. (For non-commutative G see
Definition 2.)

Proposition 1 in Section 1 and Proposition 2 in Section 2 are first attempts
to relate Definition 1 with standard definitions of Hopf algebras in terms of the
basic morphisms S, µ,∆. It turns out that there are some subtleties regarding the
transpose τ .

In some future version we hope to make the Propositions more precise (a better
scenario would be if someone could tell me references on these things. . . ).

As for the example Λ•V : This text doesn’t cover the grading. We are not sure
yet about how to formalize the grading in a way that fits the applications we have
in mind.
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1. Strict bicommutative Hopf algebras

The material of this text grew out from computations with the exterior algebra
H = Λ•V . So we begin with this example.

We found it appropriate not to start out with S, µ,∆ but in a slightly different
way. Since one has

H⊗n = Λ•(V ⊗Z Zn)

there is a natural action of integral matrices on the tensor powers of H (by acting
on the Zn). We denote this action by

M(n,m,Z)×H⊗m → H⊗n

(A, x) 7→ [A](x)

This way the basic morphisms S, µ,∆ have the descriptions

S = [−1], µ = [1, 1], ∆ =

[
1
1

]
To mention a further example, consider[

1 1
0 1

]
: H⊗2 → H⊗2

In concrete terms this is the morphism

(µ⊗ 1) ◦ (1⊗∆): (Λ•V )⊗2 → (Λ•V )⊗2

x⊗ y 7→
∑
i

xyi ⊗ y′i
(∑

i

yi ⊗ y′i = ∆(y)
)

Using the matrix notation the sometimes tiring computations in terms of S, µ,∆
can be written in a more compact form.

Another and much simpler example is that of the Hopf algebra H of a commu-
tative affine algebraic group G = SpecH. One has

SpecH⊗n = Gn = G⊗ Zn

and the resulting action of integral matrices on the family H⊗n is on group level
just the collection of homomorphisms

[A]∗ : Gn → Gm

(g1, . . . , gn) 7→
(
. . . ,

∏
i

g
aij

i , . . .
)

with A = (aij) ∈M(n,m,Z).

The natural way to set up such operations of integral matrices

M(n,m) = M(n,m,Z) = HomZ(Zm,Zn)

seems to be to consider certain monoidal functors (for monoidal categories see [1]).
Let Z be the category with objects Zn (n ≥ 0) and with morphisms

HomZ(Zm,Zn) = HomZ(Zm,Zn)

the Z-linear homomorphisms (or integral n × m-matrices). We consider Z as a
monoidal category with respect to the coproduct

Zn1 ⊕ Zn2 = Zn1+n2
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Thus Z is the full monoidal subcategory of the category of abelian groups generated
by the object Z.

Definition 1. A strict bicommutative Hopf algebra is a monoidal functor

F : (Z,⊕)→ (C,�)

of monoidal categories.

Maybe there is a better name for such a functor, but in the end it is a Hopf
algebra in some restricted form. One just doesn’t mention the axioms for a Hopf
algebra in the definition explicitly, rather one derives them from the axioms of a
group.

The word bicommutative stands for commutative and cocommutative. The ob-
ject H = F (Z) is called a (strict) bicommutative Hopf algebra (in C) as well.

Let

S = (−1) ∈M(1, 1)

µ = (1, 1) ∈M(1, 2)

∆ =

(
1
1

)
∈M(2, 1)

τ =

(
0 1
1 0

)
∈M(2, 2)

I believe that something like the following is correct:

Proposition 1. Let H be an object in a monoidal category (C,�). Let further

SH ∈ Hom(H,H), µH ∈ Hom(H �H,H),

∆H ∈ Hom(H,H �H), τH ∈ Hom(H �H,H �H)

be morphisms in C.
There is a monoidal functor

H̃ : (Z,⊕)→ (C,�)

with

H̃(Z) = H, H̃(S) = SH , H̃(µ) = µH , H̃(∆) = ∆H , H̃(τ) = τH

if and only if the following conditions hold:

(1) The monoidal subcategory H of (C,�) generated by H and SH , µH ,∆H , τH
is a symmetric monoidal category with respect to τH .

(2) (H,SH , µH ,∆H) is a commutative and cocommutative Hopf algebra in the
symmetric monoidal category H.

Condition (1) is somewhat unprecise. The objects of H are H�n (only up to
canonical isomorphisms if (C,�) is not strict). We understand that the isomor-
phisms

H�n � H�m ' H�m � H�n

of the symmetric monoidal category H are build in the obvious way from τH .
Condition (2) refers to a standard (and obvious) definition of Hopf algebras in

symmetric monoidal categories (reference?).



NOTES ON STRICT BICOMMUTATIVE HOPF ALGEBRAS 5

It is easy to see that S, µ,∆, τ generate all morphisms in Z with respect to
compositions and direct products (details are omitted for now). It follows that the

functor H̃ in Proposition 1 is uniquely determined.
Interestingly, τ can be expressed in terms of S, µ,∆, see relation (R) in Section 2.

However I didn’t find a useful way to eliminate τ from Proposition 1.

To summarize, we understand Proposition 1 as a justification to call a functor
as in Definition 1 a “bicommutative Hopf algebra”.

For the applications to H = Λ•V we have in mind, Proposition 1 is not necessary
at all: one just works with the functor

Z → graded R-algebras

X 7→ Λ•(V ⊗Z X)

Probably one may generalize these considerations to commutative but not nec-
essarily cocommutative Hopf algebras. One replaces the category (Z,⊕) by the full
monoidal subcategory (F , ∗) of the category of groups generated by the object Z.
Here the monoidal operation ∗ is again the coproduct (the free product of groups).
Thus the objects of F are the free groups Fn on n letters x1, x2, . . . and an element

A ∈ Hom(Fm, Fn)

is a collection

A = (w1, . . . , wm)

of words wj in the x1, . . . , xn.
For a group G the functor

Fop → Sets

Fn 7→ Hom(Fn, G) = Gn

yields maps

Hom(Fm, Fn)→ Maps(Gn, Gm)

It associates to

A = (w1, . . . , wm) ∈ Hom(Fm, Fn)

the map

[A]∗ : Gn → Gm

(g1, . . . , gn) 7→
(
w1(gi), . . . , wm(gi)

)
For an affine algebraic group G = SpecH, this yields maps

Hom(Fm, Fn)→ Hom(H⊗m, H⊗n)

A (tentative) definition would be

Definition 2. A strict commutative Hopf algebra is a monoidal functor

F : (F , ∗)→ (C,�)

of monoidal categories.
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I have no applications in mind for the non-cocommutative commutative case.
However concerning our discussions this generalization of the bicommutative case
seems to be obvious. I haven’t looked at the case of general Hopf algebras (not
necessarily commutative or cocommutative).

By the way, I don’t think τ can be expressed in terms of S, µ,∆ in the category F
(with obvious definitions of S, µ,∆, τ in F).
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2. Generators and relations for integral matrices

This section consists of another line of introduction to the material.
For the family of groups of integral matrices

M(n,m) = M(n,m,Z) = HomZ(Zm,Zn)

consider the following two kinds of operations: The product or composition of
matrices

M(n,m)×M(m, k)→M(n, k)

(A,B) 7→ AB

and the direct sum:

M(n1,m1)×M(n2,m2)→M(n1 + n2,m1 +m2)

(A1, A2) 7→ A1 ⊕A2 =

(
A1 0
0 A2

)
One may ask: Which set of matrices will generate all matrices using these oper-

ations? And what would be the relations among such generators?
As for a set of generators, there is an obvious choice:

S = (−1) ∈M(1, 1)

µ = (1, 1) ∈M(1, 2)

∆ =

(
1
1

)
∈M(2, 1)

τ =

(
0 1
1 0

)
∈M(2, 2)

It is easy to see that S, µ,∆, τ yield all matrices (details are omitted for now).
For instance one gets the basic elementary 2× 2 matrices as follows(

1 1
0 1

)
=

(
1 1 0
0 0 1

)1 0
0 1
0 1

 = (µ⊕ 1)(1⊕∆)

(
1 0
1 1

)
=

(
1 0 0
0 1 1

)1 0
1 0
0 1

 = (1⊕ µ)(∆⊕ 1)

Their inverses can be obtained like this(
1 −1
0 1

)
= (µ⊕ 1)(1⊕ S ⊕ 1)(1⊕∆)

Moreover, the transposition τ yields the transpositions

(1s ⊕ τ ⊕ 1t) ∈ GL(s+ t+ 2,Z)

and therefore by compositions all permutation matrices of any size.
Now, what are the relations among our generators S, µ,∆, τ?
Interestingly, the transposition τ can be expressed in terms of the other genera-

tors S, µ,∆ because of

(R)

(
0 1
1 0

)
=

(
1 1
0 1

)(
1 0
−1 1

)(
1 1
0 1

)(
−1 0
0 1

)
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This relation is well-known: The group SL(2,Z) is generated by
(
1 1
0 1

)
,
(
1 0
1 1

)
and (R) is essentially the standard expression of

(
0 1
−1 0

)
in terms of these generators

(as for instance in [3]).

Proposition 2 (preliminary version). The answer for a set of generating relations
among the S, µ,∆, τ is (probably) essentially this:

(1) The relations which ensure that the transposition τ together with direct
product operations yields indeed the permutation groups. By the Coxeter
type presentation for the permutation groups this amounts to the relations

1 = τ2

1 = σ3

with

σ = (τ ⊕ 1)(1⊕ τ)

Moreover the compatibilities of S, µ,∆ with τ :

(1⊕ S)τ = τ(S ⊕ 1)

(1⊕∆)τ = σ(∆⊕ 1)

τ(µ⊕ 1) = (1⊕ µ)σ

(2) The axioms of a commutative and cocommutative Hopf algebra with S the
antipode, µ the product, ∆ the coproduct and τ the transpose. These include
associativity

µ(1⊕ µ) = µ(1⊕ µ)

(1⊕∆)∆ = (1⊕∆)∆

commutativity

µ = µτ

∆ = τ∆

and of course the major Hopf algebra axioms

0 = µ(1⊕ S)∆

∆µ = (µ⊕ µ)(1⊕ τ ⊕ 1)(∆⊕∆)

(3) Clearly the set up should include the “monoidal” relations

(f ⊕ 1)(1⊕ g) = (f ⊕ g) = (1⊕ g)(f ⊕ 1)

. . . �

To make this precise, one should consider the category Z in Section 1.
Just for an illustration: The bialgebra axiom (the last relation of (2) in Propo-

sition 2) reads in matrix form as

(
1
1

)(
1 1

)
=

(
1 1
1 1

)
=

(
1 1 0 0
0 0 1 1

)
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




1 0
1 0
0 1
0 1
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Informally speaking, the mentioned relations permit to move in a composition
the ∆ to the right and the µ to the left. In the middle there remains a combination
of τ and S. The latter is a permutation matrix with entries ±1, that is an element
of the normalizer of the diagonal matrices in GLn(Z).

By the way, to think about the relations, I found it useful to use diagrammatic
calculus as for many tensor categories.

It is obvious to think of the classical presentations of GL(n,Z) or SL(n,Z) in
terms of generators and relations. My standard reference here is [2]. A quick
reference for SL(n,Z) is Wikipedia: “Special linear group”, section “Generators
and relations”. The generators

Tij = eij(1) (i 6= j)

have the relations

(T12T
−1
21 T12)4 = 1(1)

[Tij , Tk`] = 1 (i, j, k, ` pairwise distinct)(2)

[Tij , Tik] = 1 (j 6= k)(3)

[Tji, Tki] = 1 (j 6= k)(4)

[Tij , Tjk] = Tik (i 6= k)(5)

Relation (1) considered for GL(2,Z) is essentially the relation (R) together with
relations for S, τ , namely S2 = 1, τ2 = 1 and a commutation relation.

Relation (2) is in our context encoded in the word “monoidal”.
Relation (3) is related with the associativity of the product µ, relation (4) with

the associativity of the coproduct ∆.
If I am not mistaken, relation (5) is useful for the application H = Λ•V .
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