ON A CUBIC IDENTITY FOR INVOLUTIVE HOPF ALGEBRAS

MARKUS ROST

Contents

Pre-Preface 2
Preface 2
§1. The cubic identity 3
§2. The categories \mathcal{H} and \mathcal{F} 4
2.1. The category \mathcal{H} 4
2.2. The category \mathcal{F} 4
2.3. The functor K 5
2.4. Interpretation by a relation for Φ_{2} 5
§3. Further discussion of $K: \mathcal{H} \rightarrow \mathcal{F}$ 5
3.1. Universal property of \mathcal{H} 5
3.2. Universal property of $\mathcal{F}^{\text {op }}$ 6
3.3. Universal property of \mathcal{F} 6
3.4. Universal property of K 6
§4. The functor $\mathcal{H} \rightarrow \mathcal{F} \times \mathcal{F}^{\text {op }}$ 7
4.1. Examples of strongly involutive relations 7
4.2. Abelianization 8
4.3. Universal property of \mathcal{Z} 8
4.4. The homomorphisms \bar{K}_{n} 8
§5. Extending \bar{K}_{n} 9
5.1. The functors T_{μ}, T_{Δ} 9
5.2. Extending Ψ_{n} 10
§6. The homomorphism $B_{4} \rightarrow \Theta_{2}$ 11
§7. Presentations 13
7.1. Presentation of Φ_{2} 13
7.2. A variation 14
7.3. Presentation of some "small" subgroups 14
7.4. Presentation of Ψ_{2} 15
7.5. Presentation of $\bar{\Psi}_{2}$ 18
References 19

[^0]
Pre-Preface

This is work in progress. The first version of this text (July 24) ended with section 5 . Section 6 was added later (July 26); it is complete and essentially selfcontained, up to standard notations. In Section 7 we started to give details on some presentations. It may change anytime.

Preface

The main purpose of this text is to present relation $(*)$ in Lemma (1.1) with a detailed proof, in order to ask: Is there a reference for it?

I haven't been dealing with combinatorial group theory for decades and I am not an expert for Hopf algebras at all.

At some point I bumped into Lemma (1.1) which led me to the topic. Meanwhile I have looked into tons of papers, but I certainly may have missed important ones (and sure enough I haven't digested yet much of the developments since the 1980's).

Specific questions are

- Anybody seen Lemma (1.1)? Anybody seen Proposition (6.1)? Is there a geometric explanation of the B_{4}-operation?
- Any reference for the homomorphisms K_{n} in (2.1)?
- Any reference for the universal property of the functor K (see section 3.4)?
- Any reference for the functor $\bar{K}(4.1)$? What about the universal relations which hold in commutative Hopf algebras and in cocommutative Hopf algebras? Any reference for the group homomorphisms \bar{K}_{n} (see section 4.4)?
- Any comment on the remarks in section 4.3?

§1. The cubic identity

By a Hopf algebra we understand for simplicity a Hopf algebra over a field R. However our arguments are completely formal and work for very general types of Hopf algebras.

Let $H=(H, \mu, u, \Delta, c, S)$ be a Hopf algebra with the basic structure morphisms

$$
\begin{gathered}
\mu: H^{\otimes 2} \rightarrow H \\
u: R \rightarrow H \\
\Delta: H \rightarrow H^{\otimes 2} \\
c: H \rightarrow R \\
S: H \rightarrow H
\end{gathered}
$$

Let further

$$
\tau: H^{\otimes 2} \rightarrow H^{\otimes 2}
$$

be the switch involution.
A Hopf algebra is called involutive if its antipode S is of order 2:

$$
S^{2}=1
$$

(for morphisms we usually write 1 for the identity).
We freely use Sweedler's sigma notation. We use it sumless (no sigma here) and without parenthesis.

We consider a bunch of morphisms $H^{\otimes 2} \rightarrow H^{\otimes 2}$:

$$
\begin{aligned}
\widetilde{\tau} & =(S \otimes 1) \circ \tau=\tau \circ(1 \otimes S) & & x \otimes y \mapsto S(y) \otimes x \\
\widetilde{\tau}^{\prime} & =(1 \otimes S) \circ \tau=\tau \circ(S \otimes 1) & & x \otimes y \mapsto y \otimes S(x) \\
\phi & =(1 \otimes \mu) \circ(\Delta \otimes 1) & & x \otimes y \mapsto x_{1} \otimes x_{2} y \\
\phi^{\prime} & =(1 \otimes \mu) \circ(1 \otimes S \otimes 1) \circ(\Delta \otimes 1) & & x \otimes y \mapsto x_{1} \otimes S\left(x_{2}\right) y
\end{aligned}
$$

(1.1) Lemma. Assume $S^{2}=1$. Then

$$
\begin{equation*}
(\widetilde{\tau} \phi)^{3}=1 \tag{*}
\end{equation*}
$$

in $\operatorname{End}\left(H^{\otimes 2}\right)$.
Proof: We first show $\phi \phi^{\prime}=1$:

$$
x \otimes y \mapsto x_{1} \otimes S\left(x_{2}\right) y \mapsto x_{11} \otimes x_{12} S\left(x_{2}\right) y=x \otimes y
$$

Here we used that S is a right inverse and understand $\Delta_{2}(x)=x_{11} \otimes x_{12} \otimes x_{2}$ where

$$
\Delta_{2}=(\Delta \otimes 1) \circ \Delta=(1 \otimes \Delta) \circ \Delta
$$

Since $S^{2}=1$ one has $\widetilde{\tau} \widetilde{\tau}^{\prime}=1$. Hence $(\widetilde{\tau} \phi)^{3}=1$ reads as

$$
\phi \widetilde{\tau} \phi=\widetilde{\tau}^{\prime} \phi^{\prime} \widetilde{\tau}^{\prime}
$$

The right side computes as

$$
x \otimes y \mapsto y \otimes S(x) \mapsto y_{1} \otimes S\left(y_{2}\right) S(x) \mapsto S\left(y_{2}\right) S(x) \otimes S\left(y_{1}\right)
$$

and the left side as

$$
\begin{aligned}
x \otimes y \mapsto x_{1} \otimes x_{2} y & \mapsto S\left(x_{2} y\right) \otimes x_{1} \\
& \mapsto S\left(x_{2} y\right)_{1} \otimes S\left(x_{2} y\right)_{2} x_{1} \\
& =S\left(\left(x_{2} y\right)_{2}\right) \otimes S\left(\left(x_{2} y\right)_{1}\right) x_{1} \\
& =S\left(x_{22} y_{2}\right) \otimes S\left(x_{21} y_{1}\right) x_{1} \\
& =S\left(y_{2}\right) S\left(x_{22}\right) \otimes S\left(y_{1}\right) S\left(x_{21}\right) x_{1} \\
& =S\left(y_{2}\right) S\left(x_{22}\right) \otimes S\left(y_{1}\right) S^{-1}\left(x_{21}\right) x_{1} \\
& =S\left(y_{2}\right) S\left(x_{22}\right) \otimes S\left(y_{1}\right) S^{-1}\left(S\left(x_{1}\right) x_{21}\right) \\
& =S\left(y_{2}\right) S(x) \otimes S\left(y_{1}\right)
\end{aligned}
$$

Here we used $S(u v)=S(v) S(u)$, again $S^{2}=1$ and $(x y)_{i}=x_{i} y_{i}$ (which is the main bialgebra axiom).

A crucial point is that at some spot one gets $S\left(x_{21}\right) x_{1}$ and not say $S\left(x_{22}\right) x_{1}$. The latter would collapse as well for cocommutative H, but not in general. For example, let G be a finite group and $H=R^{G}$ (the commutative ring of functions on G). Then the following maps correspond:

$$
\begin{aligned}
H & \rightarrow H^{\otimes 2} & G^{2} & \rightarrow G \\
x & \mapsto x_{2} \otimes S\left(x_{3}\right) x_{1} & (g, h) & \mapsto h g h^{-1}
\end{aligned}
$$

§2. The categories \mathcal{H} and \mathcal{F}

We consider two PROPs (symmetric monoidal categories generated by a single object).
2.1. The category \mathcal{H}. Let \mathcal{H} be the "universal Hopf algebra category" which models Hopf algebras with invertible antipode. Its objects are of the form $\mathbf{H}^{\square n}$ $(n \geq 0)$. The morphisms are generated by the basic morphisms μ, u, Δ, c, S (and S^{-1}) of a Hopf algebra subject to the axioms of Hopf algebras with invertible antipode S. To mention the main bialgebra axiom: The morphisms

$$
\begin{gathered}
\mu: \mathbf{H} \square \mathbf{H} \rightarrow \mathbf{H} \\
\Delta: \mathbf{H} \rightarrow \mathbf{H} \square \mathbf{H}
\end{gathered}
$$

are subject to

$$
\Delta \circ \mu=(\mu \square \mu) \circ(1 \square \tau \square 1) \circ(\Delta \square \Delta)
$$

where $\tau: \mathbf{H}^{\square 2} \rightarrow \mathbf{H}^{\square 2}$ is the involution.
2.2. The category \mathcal{F}. Let further \mathcal{F} be the category with objects the free groups

$$
\mathbf{F}_{n}=\left\langle e_{1}, \ldots, e_{n} \mid\right\rangle
$$

with $\mathbf{F}_{m} \square \mathbf{F}_{n}=\mathbf{F}_{m} * \mathbf{F}_{n}=\mathbf{F}_{m+n}$ (free product of groups, the coproduct in the category \mathcal{G} of groups) and

$$
\operatorname{Hom}\left(\mathbf{F}_{m}, \mathbf{F}_{n}\right)=\operatorname{Hom}_{\mathcal{G}}\left(\mathbf{F}_{m}, \mathbf{F}_{n}\right)
$$

2.3. The functor K. Let K be the (obvious) monoidal functor

$$
K: \mathcal{H} \rightarrow \mathcal{F}
$$

with

$$
K\left(\mathbf{H}^{\square n}\right)=\mathbf{F}_{n}
$$

and

$$
\begin{aligned}
K(\mu): & \mathbf{F}_{2} & \rightarrow \mathbf{F}_{1} & e_{1}, e_{2} \mapsto e_{1} \\
K(u) & : \mathbf{F}_{0} & \rightarrow \mathbf{F}_{1} & \\
K(\Delta): & \mathbf{F}_{1} & \rightarrow \mathbf{F}_{2} & e_{1} \mapsto e_{1} e_{2} \\
K(c): & \mathbf{F}_{1} & \rightarrow \mathbf{F}_{0} & \\
K(S) & : \mathbf{F}_{1} & \rightarrow \mathbf{F}_{1} & e_{1} \mapsto e_{1}^{-1}
\end{aligned}
$$

It is easily checked (and basic) that the axioms of a Hopf algebra hold correspondingly in \mathcal{F}, so we have indeed a functor.

On morphisms this functor induces maps

$$
\operatorname{Hom}_{\mathcal{H}}\left(\mathbf{H}^{\square n}, \mathbf{H}^{\square m}\right) \rightarrow \operatorname{Hom}\left(\mathbf{F}_{n}, \mathbf{F}_{m}\right)
$$

We write

$$
\Theta_{n}=\operatorname{Aut}_{\mathcal{H}}\left(\mathbf{H}^{\square n}\right)
$$

for the automorphism groups in \mathcal{H} and

$$
\Phi_{n}=\operatorname{Aut}\left(\mathbf{F}_{n}\right)
$$

for the automorphism group of a free group of rank n (with given basis) and denote by

$$
\begin{equation*}
K_{n}: \Theta_{n} \rightarrow \Phi_{n} \tag{2.1}
\end{equation*}
$$

the group homomorphisms induced by K. It is easy to lift the standard generators of Φ_{n}, hence the K_{n} are surjective.
2.4. Interpretation by a relation for Φ_{2}. If one maps relation (*) under

$$
K_{2}: \Theta_{2} \rightarrow \Phi_{2}
$$

one gets the cubic relation $(U P O)^{3}=1$ in a classical presentation ${ }^{1}$ of the automorphism group of a free group of with 2 generators.

§3. Further discussion of $K: \mathcal{H} \rightarrow \mathcal{F}$

3.1. Universal property of \mathcal{H}. The essential property of the category \mathcal{H} is that for each actual Hopf algebra H in an appropriate category \mathcal{C} (let us assume \mathcal{C} is the category of vector spaces over a field R with the tensor product as monoidal operation), there is the monoidal functor

$$
\begin{gathered}
\underline{H}: \mathcal{H} \rightarrow \mathcal{C} \\
\underline{H}(\mathbf{H})=H \\
\underline{H}(\Delta)=\Delta_{H} \quad \text { etc. }
\end{gathered}
$$

[^1]3.2. Universal property of $\mathcal{F}^{\mathrm{op}}$. A group G is nothing else than a monoidal functor
$$
g: \mathcal{F}^{\mathrm{op}} \rightarrow \mathcal{S}
$$
to the category \mathcal{S} of sets: Given G, one takes for g the Hom-functor
$$
g\left(\mathbf{F}_{n}\right)=\operatorname{Hom}_{\mathcal{G}}\left(\mathbf{F}_{n}, G\right)=G^{n}
$$
and given g, the set $G=g\left(\mathbf{F}_{1}\right)$ comes with a group structure where the multiplication $G \times G \rightarrow G$ is given by
\[

$$
\begin{gathered}
\mathbf{F}_{1} \rightarrow \mathbf{F}_{2} \\
e_{1} \mapsto e_{1} e_{2}
\end{gathered}
$$
\]

3.3. Universal property of \mathcal{F}. Let G be a finite set and let R^{G} be the commutative ring of functions $G \rightarrow R$. To endow G with a group-structure means the same thing as to extend R^{G} to a commutative Hopf algebra over R.

This remarks extends to affine algebraic groups G : If

$$
G=\operatorname{Spec} R_{G}
$$

then a group structure on G corresponds to a commutative Hopf algebra structure on R_{G}.

It follows that at least for the category \mathcal{C} of (associative and unital) R-algebras, a monoidal functor

$$
\mathcal{F} \rightarrow \mathcal{C}
$$

is nothing else than a commutative Hopf algebra over R.
3.4. Universal property of K. In fact, this remark extends to arbitrary Hopf algebras: A Hopf algebra H is commutative if and only if its functor

$$
\underline{H}: \mathcal{H} \rightarrow \mathcal{C}
$$

admits a factorization

$$
\underline{H}: \mathcal{H} \xrightarrow{K} \mathcal{F} \rightarrow \mathcal{C}
$$

This means that \mathcal{F} is the quotient category of \mathcal{H} by the commutativity relation

$$
\mu \circ \tau=\mu
$$

Likewise $\mathcal{F}^{\text {op }}$ is the quotient category of \mathcal{H} by the cocommutativity relation

$$
\tau \circ \Delta=\Delta
$$

Details can be worked out using Proposition 1 and Exercise 3 in Mac Lane 1998 (1971) [5, III.6. Groups in Categories, p. 75-76]).

Surprisingly, so far I found only one related reference: Conant and Kassabov (2016) [1, 4. Hopf algebras and groups].
§4. The functor $\mathcal{H} \rightarrow \mathcal{F} \times \mathcal{F}^{\text {op }}$
The category \mathcal{H} has the "duality" functor

$$
\begin{gathered}
D: \mathcal{H} \rightarrow \mathcal{H}^{\mathrm{op}} \\
D \circ D=\mathrm{id} \\
D(\mu)=\Delta \\
D(u)=c \\
D(S)=S
\end{gathered}
$$

In diagrammatic pictures like in Kuperberg 1991 [4], the functor D is given by the flip of diagrams.

Consider the functor

$$
\begin{equation*}
\bar{K}=(K, K \circ D): \mathcal{H} \rightarrow \mathcal{F} \times \mathcal{F}^{\mathrm{op}} \tag{4.1}
\end{equation*}
$$

Since \mathcal{F} controls commutative Hopf algebras and $\mathcal{F}^{\text {op }}$ controls cocommutative Hopf algebras, the "kernel" of \bar{K} on morphisms consists of the universal relations which hold in commutative Hopf algebras and in cocommutative Hopf algebras.

The relation $S^{2}=1$ is the basic example of such a relation (every commutative or cocommutative Hopf algebra is involutive). Therefore we call such relations "strongly involutive" relations. (And a Hopf algebra which obeys them might be called a "strongly involutive Hopf algebra".)
4.1. Examples of strongly involutive relations. Let $H=(H, \mu, u, \Delta, c, S)$ be a Hopf algebra. We assume that the antipode S is invertible.

Consider the relations (in Sweedler notation)

$$
\begin{align*}
x_{1} y S\left(x_{2}\right) & =x_{2} y S\left(x_{1}\right) \tag{4.2}\\
x_{2} \otimes x_{1} S\left(x_{3}\right) y & =x_{2} \otimes y x_{1} S\left(x_{3}\right) \tag{4.3}
\end{align*}
$$

These relations are understood in $\operatorname{Hom}\left(H^{\otimes 2}, H\right)$ resp. $\operatorname{End}\left(H^{\otimes 2}\right)$.
Formally, relation (4.2) means

$$
\begin{aligned}
& \mu_{2} \circ(1 \otimes 1 \otimes S) \circ(1 \otimes \tau) \circ(\Delta \otimes 1)= \\
& \mu_{2} \circ(1 \otimes 1 \otimes S) \circ(1 \otimes \tau) \circ(\tau \otimes 1) \circ(\Delta \otimes 1)
\end{aligned}
$$

with $\mu_{2}=\mu \circ(1 \otimes \mu)=\mu \circ(\mu \otimes 1)$ and $\tau \in \operatorname{End}\left(H^{\otimes 2}\right)$ the involution.
If H is cocommutative, relation (4.2) holds since $x_{1} \otimes x_{2}=x_{2} \otimes x_{1}$. If H is commutative, the relation follows from the antipode properties $x_{1} S\left(x_{2}\right)=1$ and $S\left(x_{1}\right) x_{2}=1$. Relation (4.3) is obvious in the commutative case. In the cocommutative case one has $x_{1} S\left(x_{3}\right)=1$.

Another consequence of (4.2) is

$$
S^{2}=1
$$

($y=1$ yields $x_{2} S\left(x_{1}\right)=1$). Thus, if H obeys (4.2), then H is involutive.
There are also the dual relations.
It should be possible to find a generating set for all strongly involutive relations.
4.2. Abelianization. Let \mathcal{Z} be the PROP like \mathcal{F} but with objects the free abelian groups \mathbf{Z}^{n} (with basis). There is the duality functor

$$
\begin{gathered}
D: \mathcal{Z} \rightarrow \mathcal{Z}^{\mathrm{op}} \\
D(X)=\operatorname{Hom}_{\mathbf{Z}}(X, \mathbf{Z})
\end{gathered}
$$

The induced map on morphisms

$$
\operatorname{Hom}_{\mathcal{Z}}\left(\mathbf{Z}^{n}, \mathbf{Z}^{m}\right)=\operatorname{Mat}(\mathbf{Z}, m \times n)
$$

is the transpose of integral matrices: $D(M)=M^{t}$.
Let

$$
\begin{gathered}
A: \mathcal{F} \rightarrow \mathcal{Z} \\
A\left(\mathbf{F}_{n}\right)=\mathbf{Z}^{n}
\end{gathered}
$$

denote the natural functor given by abelianization. Then the composition

$$
\mathcal{H} \xrightarrow{K} \mathcal{F} \xrightarrow{A} \mathcal{Z}
$$

commutes with D on \mathcal{H}, \mathcal{Z} (there is no duality on \mathcal{F}) and we have a commutative diagram

4.3. Universal property of \mathcal{Z}. By the way, the category \mathcal{Z} models bicommutative (commutative and cocommutative) Hopf algebras: A monoidal functor

$$
\mathcal{Z} \rightarrow \mathcal{C}
$$

is the same thing as a bicommutative Hopf algebra in \mathcal{C}.
I noticed that some years ago, but still haven't seen a reference. This is strange, since the symmetric and exterior algebras of a vector space are so prominent examples of bicommutative Hopf algebras. Not to speak of affine commutative group schemes.
4.4. The homomorphisms \bar{K}_{n}. On automorphisms the functor \bar{K} yields group homomorphisms

$$
\bar{K}_{n}: \Theta_{n} \rightarrow \Phi_{n} \times \Phi_{n}^{\mathrm{op}}
$$

It is not difficult ${ }^{2}$ to compute the image of \bar{K}_{n} as

$$
\operatorname{im} \bar{K}_{n}=\Psi_{n}:=\left\{(f, g) \in \Phi_{n} \times \Phi_{n}^{\mathrm{op}} \mid \bar{f}=\bar{g}^{t}\right\}
$$

where

$$
\bar{f}=A(f) \in \mathrm{GL}_{n}(\mathbf{Z})
$$

denotes the abelianization of $f \in \Phi_{n}$ and M^{t} is the transpose of a matrix M.
An element in the kernel of \bar{K}_{n} is a strongly involutive relation. So an obvious question is:

What is the kernel of the group homomorphism \bar{K}_{n} ?

[^2]This is perhaps too much to ask for, since it seems difficult to list generators for Θ_{n} efficiently. To get them one has to cover in principle all sequences of compositions of elementary morphisms in various $\operatorname{Hom}\left(\mathbf{H}^{\square h}, \mathbf{H}^{\square k}\right)$ resulting in elements of Θ_{n} (just look at the case $n=0$).

Even having a complete set of strongly involutive relations doesn't mean to get a hand on generators for Θ_{n}.

A more tractable question is
Which elements $R_{i} \in \Theta_{n}$ are needed to have a section

$$
\Psi_{n} \rightarrow \Theta_{n} /\left\langle R_{i}\right\rangle
$$

$$
\text { to } \bar{K}_{n} \text { ? }
$$

This can probably worked through using known presentations of Φ_{n} to get a presentation of Ψ_{n}, then take natural lifts of the generators and see what the relations give for Θ_{n}. (I have essentially done this for $n=2$.)

This way relation (4.2) showed up.
The very first experiment was to look at a lift of the relation $(U P O)^{3}=1$ for Φ_{2}. The idea was to find an interesting expression in Θ_{2}. Surprisingly this utterly failed: For relation $(*)$ one just needs $S^{2}=1$. This was the starting point of this text.

Later relation (4.3) appeared in a first systematic attempt to compute all strongly involutive relations (not completed).

§5. Extending \bar{K}_{n}

It seems to be helpful to extend both sides of \bar{K}_{n} by certain natural operations. This results essentially in extensions by $\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}$.

We first discuss the \mathcal{H}-side.
5.1. The functors T_{μ}, T_{Δ}. The category \mathcal{H} comes with a bunch of (anti-)automorphisms of order 2.

One is the duality functor D which yields automorphisms

$$
\begin{gathered}
\sigma: \Theta_{n} \rightarrow \Theta_{n} \\
\sigma(f)=D\left(f^{-1}\right)
\end{gathered}
$$

of the automorphism groups.
The formation of the opposite Hopf algebra H^{op} (cf. Montgomery 1993 [7, 1.5.11 Lemma, p. 9]) is modeled by the functor

$$
\begin{gathered}
T_{\mu}: \mathcal{H} \rightarrow \mathcal{H} \\
T_{\mu}(\mu)=\mu \circ \tau \\
T_{\mu}(S)=S^{-1}
\end{gathered}
$$

and leaving u, Δ, c fixed.
Similarly there is the functor

$$
\begin{gathered}
T_{\Delta}: \mathcal{H} \rightarrow \mathcal{H} \\
T_{\Delta}(\Delta)=\tau \circ \Delta \\
T_{\Delta}(S)=S^{-1}
\end{gathered}
$$

and with $D \circ T_{\Delta}=T_{\mu} \circ D$.

Consider the quotient categories

$$
\mathcal{H}_{\mu}=\mathcal{H} /\left(T_{\mu}-1\right), \quad \mathcal{H}_{\Delta}=\mathcal{H} /\left(T_{\Delta}-1\right)
$$

The projection $\mathcal{H} \rightarrow \mathcal{H}_{\mu}$ is the identity on objects and is universal for the relation $T_{\mu}(f)=f$ for morphisms in \mathcal{H}. Likewise for \mathcal{H}_{Δ}. Hence these categories model commutative resp. cocommutative Hopf algebras and one has

$$
\mathcal{H}_{\mu}=\mathcal{F}, \quad \mathcal{H}_{\Delta}=\mathcal{F}^{\mathrm{op}}
$$

Note that $T_{\mu} \circ T_{\Delta}=T_{\Delta} \circ T_{\mu}$ is conjugation with S_{n}, where

$$
S_{n}=S^{\square n} \in \Theta_{n}
$$

Moreover, $S_{n}^{2} \in \Theta_{n}$ is central.
Let us pass to the quotient category

$$
\mathcal{H}^{\prime}=\mathcal{H} /\left(S^{2}-1\right)
$$

which models involutive Hopf algebras and put

$$
\Theta_{n}^{\prime}=\operatorname{Aut}_{\mathcal{H}^{\prime}}\left(\mathbf{H}^{\square n}\right)
$$

The group Θ_{n}^{\prime} is the quotient of Θ_{n} by the subgroup generated by the elements

$$
1 \square \cdots \square
$$ $\square 1$ $\square S$ \qquad $1 \square$ $\square \ldots$$\square 1$

Clearly the functor \bar{K} factors through \mathcal{H}^{\prime} and the homomorphism \bar{K}_{n} factors through Θ_{n}^{\prime}. (We could have passed to \mathcal{H}^{\prime} earlier.)

The group Θ_{n}^{\prime} has a canonical extension by $\mathbf{Z} / 2 \mathbf{Z}$ given by additional elements

$$
X_{\mu}, X_{\Delta}
$$

subject to the relations

$$
\begin{array}{rlrl}
X_{\mu} f X_{\mu}^{-1} & =T_{\mu}(f) & & \left(f \in \Theta_{n}\right) \\
X_{\Delta} f X_{\Delta}^{-1} & =T_{\Delta}(f) & & \left(f \in \Theta_{n}\right) \\
X_{\mu}^{2}=X_{\Delta}^{2} & =1 &
\end{array}
$$

(This extension can be formed also for Θ_{n}, but not in a straightforward way. For instance, one has a choice for $X_{\mu} X_{\Delta}=S_{n}^{ \pm 1}$.)
5.2. Extending Ψ_{n}. On the $\left(\mathcal{F} \times \mathcal{F}^{\mathrm{op}}\right)$-side one extends by the automorphism

$$
\begin{gathered}
\sigma: \Phi_{n} \times \Phi_{n}^{\mathrm{op}} \rightarrow \Phi_{n} \times \Phi_{n}^{\mathrm{op}} \\
\sigma(f, g)=\left(g^{-1}, f^{-1}\right)
\end{gathered}
$$

which leaves Ψ_{n} invariant and adds to Ψ_{n} the element

$$
\begin{gathered}
(\varepsilon, 1) \in \Phi_{n} \times \Phi_{n}^{\mathrm{op}} \\
\varepsilon\left(e_{i}\right)=e_{i}^{-1}
\end{gathered}
$$

($(\varepsilon, \varepsilon)$ is the image of S_{n} and $(\varepsilon, 1)$ corresponds to $\left.X_{\Delta}\right)$.
This results in the group

$$
\bar{\Psi}_{n}=\left\{\left((f, g), \sigma^{k}\right) \in\left(\Phi_{n} \times \Phi_{n}^{\mathrm{op}}\right) \rtimes \mathbf{Z} / 2 \mathbf{Z} \mid \bar{f}= \pm \bar{g}^{t}\right\}
$$

The first incentive to consider this extension was to simplify presentations in terms of generators and relations, but clearly the corresponding extension on the \mathcal{H}^{\prime}-side is noteworthy as well.

The case $n=2$ is helped by fact that the automorphism

$$
\begin{gathered}
\mathrm{GL}_{2}(\mathbf{Z}) \rightarrow \mathrm{GL}_{2}(\mathbf{Z}) \\
A \mapsto \operatorname{det}(A) A^{-t}
\end{gathered}
$$

is inner (conjugation with $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$). It follows that

$$
\bar{\Psi}_{2} \simeq\left\{\left((f, g), \sigma^{k}\right) \in\left(\Phi_{2} \times \Phi_{2}\right) \rtimes \mathbf{Z} / 2 \mathbf{Z} \mid \bar{f}= \pm \bar{g}\right\}
$$

with $\sigma(f, g)=(g, f)$.
Note added August 2: Section 7 contains a presentation for $\bar{\Psi}_{2}$. Lifting the relations to the extended Θ_{2}^{\prime} seems to need just (4.2) (for now the reader is invited to try himself).

$\S 6$. The homomorphism $B_{4} \rightarrow \Theta_{2}$

We generalize Lemma (1.1). We assume that the antipode S is invertible and do not assume $S^{2}=1$.

We consider a bunch of morphisms $H^{\otimes 2} \rightarrow H^{\otimes 2}$: First let

$$
\begin{array}{ll}
\rho=(1 \otimes S) \circ \tau=\tau \circ(S \otimes 1) & x \otimes y \mapsto y \otimes S(x) \\
\alpha=(1 \otimes \mu) \circ(\Delta \otimes 1) & x \otimes y \mapsto x_{1} \otimes x_{2} y
\end{array}
$$

The morphism ρ is obviously invertible, an inverse of α is given below. We put

$$
\beta=\rho^{-1} \alpha \rho, \quad \gamma=\rho^{-2} \alpha \rho^{2}
$$

(6.1) Proposition. One has

$$
\begin{align*}
\alpha \beta \alpha & =\beta \alpha \beta \tag{6.2}\\
\beta \gamma \beta & =\gamma \beta \gamma \tag{6.3}\\
\alpha \gamma & =\gamma \alpha \tag{6.4}
\end{align*}
$$

Hence for any Hopf algebra H we get an operation of the braid group B_{4} on $H^{\otimes 2}$. (For commutative H this operation is given by the isomorphism ${ }^{3} B_{4} /$ center $\rightarrow \mathrm{S}_{2}$.)

The proof of Proposition (6.1) takes up the rest of this section.
First some basic remarks on the antipode (cf. Montgomery 1993 [7, §1.5, p. 7, p. 9]). The antipode S is an anti-automorphism (with respect to the product and coproduct) and S^{2} is an automorphism of the Hopf algebra H. It is characterized by

$$
S\left(x_{1}\right) x_{2}=1=x_{1} S\left(x_{2}\right)
$$

or

$$
S^{-1}\left(x_{2}\right) x_{1}=1=x_{2} S^{-1}\left(x_{1}\right)
$$

[^3]The indices in Sweedler's notation ${ }^{4}$ can be from any ordered set per variable. For instance

$$
\begin{equation*}
x_{1} \otimes x_{21} \otimes x_{22}=x_{1} \otimes x_{2} \otimes x_{3}=x_{11} \otimes x_{12} \otimes x_{2} \tag{6.5}
\end{equation*}
$$

reflects

$$
(1 \otimes \Delta) \circ \Delta=(\Delta \otimes 1) \circ \Delta
$$

Here is an extended and more detailed list of the morphisms:

$$
\begin{aligned}
\rho & =(1 \otimes S) \circ \tau=\tau \circ(S \otimes 1) & & x \otimes y \mapsto y \otimes S(x) \\
\rho^{-1} & =\left(S^{-1} \otimes 1\right) \circ \tau=\tau \circ\left(1 \otimes S^{-1}\right) & & x \otimes y \mapsto S^{-1}(y) \otimes x \\
\rho^{2} & =S \otimes S & & x \otimes y \mapsto S(x) \otimes S(y) \\
\rho^{4} & =S^{2} \otimes S^{2} & & x \otimes y \mapsto S^{2}(x) \otimes S^{2}(y)
\end{aligned}
$$

and

$$
\begin{aligned}
\alpha & =(1 \otimes \mu) \circ(\Delta \otimes 1) & & x \otimes y \mapsto x_{1} \otimes x_{2} y \\
\alpha^{\prime} & =(1 \otimes \mu) \circ(1 \otimes S \otimes 1) \circ(\Delta \otimes 1) & & x \otimes y \mapsto x_{1} \otimes S\left(x_{2}\right) y \\
\beta & =\rho^{-1} \alpha \rho & & x \otimes y \mapsto x S^{-1}\left(y_{2}\right) \otimes y_{1} \\
\gamma & =\rho^{-2} \alpha \rho^{2} & & x \otimes y \mapsto x_{2} \otimes y x_{1}
\end{aligned}
$$

One has $\alpha^{\prime}=\alpha^{-1}$ (and so α, β, γ are invertible):

$$
\alpha^{\prime} \alpha: x \otimes y \mapsto x_{1} \otimes x_{2} y \mapsto x_{11} \otimes x_{12} S\left(x_{2}\right) y=x \otimes y
$$

Let us also verify the given computations of β and γ :

$$
\begin{aligned}
\beta: x \otimes y & \mapsto y \otimes S(x) \mapsto y_{1} \otimes y_{2} S(x) \\
& \mapsto S^{-1}\left(y_{2} S(x)\right) \otimes y_{1}=x S^{-1}\left(y_{2}\right) \otimes y_{1} \\
\gamma: x \otimes y & \mapsto S(x) \otimes S(y) \mapsto S(x)_{1} \otimes S(x)_{2} S(y) \\
& =S\left(x_{2}\right) \otimes S\left(x_{1}\right) S(y) \\
& \mapsto S^{-1}\left(S\left(x_{2}\right)\right) \otimes S^{-1}\left(S\left(x_{1}\right) S(y)\right)=x_{2} \otimes y x_{1}
\end{aligned}
$$

Further computations are

$$
\begin{align*}
\alpha \beta: x \otimes y & \mapsto x S^{-1}\left(y_{2}\right) \otimes y_{1} \mapsto x_{1} S^{-1}\left(y_{2}\right)_{1} \otimes x_{2} S^{-1}\left(y_{2}\right)_{2} y_{1} \tag{6.6}\\
& =x_{1} S^{-1}\left(y_{22}\right) \otimes x_{2} S^{-1}\left(y_{21}\right) y_{1} \\
& =x_{1} S^{-1}(y) \otimes x_{2} \\
\alpha \gamma: x \otimes y & \mapsto x_{2} \otimes y x_{1} \mapsto x_{21} \otimes x_{22} y x_{1} \tag{6.7}\\
\gamma \alpha: x \otimes y & \mapsto x_{1} \otimes x_{2} y \mapsto x_{12} \otimes x_{2} y x_{11} \tag{6.8}
\end{align*}
$$

Claim (6.4) is clear from (6.7) and (6.8) (cf. (6.5)).
Moreover (6.2) implies (6.3) by a conjugation with ρ.

[^4]It remains to verify (6.2). Using (6.6) one finds

$$
\begin{aligned}
(\alpha \beta) \alpha: x \otimes y & \mapsto x_{1} \otimes x_{2} y \mapsto x_{11} S^{-1}\left(x_{2} y\right) \otimes x_{12} \\
& =x_{11} S^{-1}(y) S^{-1}\left(x_{2}\right) \otimes x_{12} \\
\beta(\alpha \beta): x \otimes y & \mapsto x_{1} S^{-1}(y) \otimes x_{2} \mapsto x_{1} S^{-1}(y) S^{-1}\left(x_{22}\right) \otimes x_{21}
\end{aligned}
$$

and (6.2) follows (cf. (6.5)). This completes the proof of Proposition (6.1).

§7. Presentations

The material of $\S 7$ could be arranged better, but I think the current version readable.
7.1. Presentation of Φ_{2}. According to Neumann 1933 [8, §1, p.367; §4, p. 374] or Magnus-Karras-Solitar 1976 [6, Problem 3.5.2, p. 169; pp. 163], the group Φ_{2} has the following presentation. This goes back to Nielsen 1924 [9].
(7.1) Theorem. The automorphism group Φ_{2} of the free group

$$
\mathbf{F}_{2}=\left\langle e_{1}, e_{2} \mid\right\rangle
$$

is generated by the elements O, P, U given by

$$
O: \begin{aligned}
& e_{1} \mapsto e_{1}^{-1} \\
& e_{2} \mapsto e_{2}
\end{aligned} \quad P: \quad e_{1} \leftrightarrow e_{2} \quad U: \begin{aligned}
& e_{1} \mapsto e_{1} e_{2} \\
& e_{2} \mapsto e_{2}
\end{aligned}
$$

A complete set of relations is

$$
\begin{aligned}
O^{2}=P^{2} & =(O P)^{4}=1 \\
(U O)^{2} & =(O U)^{2} \\
(U P O P)^{2} & =1 \\
(U O P)^{3} & =1
\end{aligned}
$$

(7.2) Remark. The referenced articles [8, 6] use transposed product of Nielsen transformations, while we use the composition of homomorphisms. This matters only for the last relation.
(7.3) Remark. The subgroup generated by O, P maps isomorphically to the subgroup

$$
\left\{\left(\begin{array}{cc}
\pm 1 & 0 \\
0 & \pm 1
\end{array}\right),\left(\begin{array}{cc}
0 & \pm 1 \\
\pm 1 & 0
\end{array}\right)\right\} \subset \mathrm{GL}_{2}(\mathbf{Z})
$$

One has

$$
\begin{array}{ll}
& e_{1} \mapsto e_{2} \\
& e_{2} \mapsto e_{1}^{-1}
\end{array} \quad(O P)^{2}: \quad e_{i} \mapsto e_{i}^{-1} \quad(i=1,2)
$$

The element $O P$ is of order 4 and $(O P)^{2}$ commutes with O, P.
(7.4) Remark. The group $\langle a, b, c \mid a b c=1\rangle$ has the automorphism $a \mapsto b \mapsto c \mapsto$ a of order 3. The automorphism $U O P$ is of this form:

$$
U O P: \quad e_{1} \mapsto e_{2} \mapsto\left(e_{1} e_{2}\right)^{-1} \mapsto e_{1}
$$

(7.5) Remark. We will frequently use the equivalence of relations

$$
(X Y)^{2}=(Y X)^{2} \quad \Longleftrightarrow \quad[X, Y X Y]=1 \quad \Longleftrightarrow \quad\left(\text { if } Y^{2}=1\right)\left[X, Y X Y^{-1}\right]=1
$$

where $[a, b]=a b a^{-1} b^{-1}$ is the commutator and of

$$
(X Y)^{2}=1 \quad \Longleftrightarrow \quad X Y X^{-1}=Y^{-1} \quad\left(\text { if } X^{2}=1\right)
$$

7.2. A variation. Let

$$
V=(O P)^{-1} U^{-1}(O P): \quad \begin{aligned}
& e_{1} \mapsto e_{1} \\
& e_{2} \mapsto e_{1} e_{2}
\end{aligned}
$$

If one replaces U by V as generator (this is suggested by the homomorphism $K \circ D$) one gets the presentation
(7.6) Corollary. The group Φ_{2} is generated by O, P, V. A complete set of relations is

$$
\begin{aligned}
O^{2}=P^{2} & =(O P)^{4}=1 \\
(V O)^{2} & =1 \\
(V P O P)^{2} & =(P O P V)^{2} \\
(V P O)^{3} & =1
\end{aligned}
$$

Proof: This follows easily from Theorem (7.1) by noting that

$$
(O P)^{-1} O(O P)=P O P
$$

and $O^{2}=P^{2}=1$.
7.3. Presentation of some "small" subgroups. For the presentation of Ψ_{2} we need some preparations.

For elements A, B in a group subject to

$$
A^{2}=B^{2}=(A B)^{4}=1
$$

we use the notations

$$
\begin{aligned}
& \bar{A}=B A B \\
& E=A \bar{A}=\bar{A} A=(A B)^{2}=(B A)^{2} \\
& \widehat{B}=A B A
\end{aligned}
$$

Let

$$
G_{0}=\left\langle A, B \mid A^{2}=B^{2}=(A B)^{4}=1\right\rangle
$$

The group G_{0} is isomorphic to the semi-direct product $\mathbf{Z}_{4} \rtimes \mathbf{Z}_{2}$ with \mathbf{Z}_{2} acting on \mathbf{Z}_{4} non-trivially. The element E generates the center of G_{0}. The elements of order 4 are $(A B)^{ \pm 1}$. The conjugacy classes of the elements of order 2 are $\{E\}$, $\{A, \bar{A}\}$ and $\{B, \widehat{B}\}$. The subgroup

$$
G_{00}=\left\langle A, \bar{A} \mid A^{2}=\bar{A}^{2}=(A \bar{A})^{2}=1\right\rangle \subset G_{0}
$$

is isomorphic to $\mathbf{Z}_{2} \times \mathbf{Z}_{2}$.

Let G_{10} be the group generated by A, \bar{A}, C subject to the relations

$$
\begin{align*}
A^{2}=\bar{A}^{2} & =(A \bar{A})^{2}=1 \tag{7.7}\\
(C A)^{2} & =(A C)^{2} \tag{7.8}\\
(C \bar{A})^{2} & =(\bar{A} C)^{2} \\
(C A C \bar{A})^{2} & =1 \tag{7.10}
\end{align*}
$$

We use the notation $X_{Y}=Y^{-1} X Y$.
(7.11) Lemma. The group G_{10} is generated by G_{00} and C with relations

$$
\begin{align*}
{\left[C, C_{A}\right] } & =1 \tag{7.12}\\
{\left[C, C_{\bar{A}}\right] } & =1 \tag{7.13}\\
{\left[C, C_{E}\right] } & =1 \tag{7.14}\\
C C_{A} C_{\bar{A}} C_{E} & =1 \tag{7.15}
\end{align*}
$$

where $E=A \bar{A}$. In other words,

$$
G_{10}=\frac{\mathbf{Z}\left[G_{00}\right]}{\mathbf{Z}} \rtimes G_{00} \simeq \mathbf{Z}^{3} \rtimes\left(\mathbf{Z}_{2} \times \mathbf{Z}_{2}\right)
$$

Here $\mathbf{Z}\left[G_{00}\right]$ is the group ring of G_{00} and

$$
\mathbf{Z}=(1+A+\bar{A}+E) \mathbf{Z} \subset \mathbf{Z}\left[G_{00}\right]
$$

is the invariant subspace.
Proof: Relations (7.12), (7.13) reformulations of (7.8), (7.9), respectively (under presence of (7.7)). Relation (7.10) is the same as

$$
C C_{A} C_{E} C_{\bar{A}}=1
$$

which after conjugation yields

$$
C_{A} C C_{\bar{A}} C_{E}=1
$$

Together with (7.12) (7.13) these yield

$$
\left[C_{A}, C_{\bar{A}}\right]=1
$$

which is (7.14) after a conjugation. Now (7.15) is immediate.
7.4. Presentation of Ψ_{2}. Let G_{1} be the group with generators

$$
A, B, C
$$

and relations

$$
\begin{align*}
A^{2}=B^{2} & =(A B)^{4}=1 \tag{7.16}\\
(C A)^{2} & =(A C)^{2} \tag{7.17}\\
(C \bar{A})^{2} & =(\bar{A} C)^{2} \tag{7.18}\\
(C A C \bar{A})^{2} & =1 \tag{7.19}\\
(A B C)^{3} & =1 \tag{7.20}
\end{align*}
$$

There is the obvious homomorphism $G_{10} \rightarrow G_{1}$ (it is injective, as can be seen later from the injectivity of $\lambda: G_{1} \rightarrow \Phi_{2} \times \Phi_{2}^{\mathrm{op}}$). Thus the relations of Lemma (7.11) hold in G_{1}.
(7.21) Lemma. Let

$$
\begin{aligned}
& x_{2}=(C A)^{2} \\
& x_{1}=B x_{2} B
\end{aligned}
$$

Then

$$
\begin{array}{rlrl}
A x_{2} A & =x_{2} & A x_{1} A & =x_{1}^{-1} \\
B x_{2} B & =x_{1} & B x_{1} B & =x_{2} \\
C x_{2} C^{-1} & =x_{2} & C^{r} x_{1} C^{-r} & =x_{1} x_{2}^{r} \quad(r \in \mathbf{Z})
\end{array}
$$

In particular, the subgroup $\left\langle x_{1}, x_{2}\right\rangle \subset G_{1}$ generated by x_{1}, x_{2} is a normal subgroup.
Proof: We freely use (7.16) and its consequences without extra reference. By (7.17), the elements A, C commute with x_{2}. The conjugations with B are obvious. $\left(A x_{1}\right)^{2}=1$ is the same as (7.15).

Put $C^{\prime}=C A$. Then (7.20) reads as $\left(B C^{\prime}\right)^{3}=1$ and one gets

$$
\begin{aligned}
\left(x_{1} C^{\prime}\right)^{2} & =\left(B C^{\prime} C^{\prime} B C^{\prime}\right)^{2} \\
& =\left(B C^{\prime}\right) C^{\prime}\left(B C^{\prime}\right)^{2} C^{\prime}\left(B C^{\prime}\right) \\
& =\left(B C^{\prime}\right) C^{\prime}\left(B C^{\prime}\right)^{-1} C^{\prime}\left(B C^{\prime}\right) \\
& =\left(B C^{\prime}\right) B C^{\prime}\left(B C^{\prime}\right)=1
\end{aligned}
$$

Hence

$$
x_{2}^{-1}=\left(x_{1} C A\right)^{2} x_{2}^{-1}=x_{1} C A x_{1}(C A)^{-1}=x_{1} C x_{1}^{-1} C^{-1}
$$

Since C commutes with x_{2} this yields the computation of $C^{r} x_{1} C^{-r}$.
[Can this be simplified, perhaps using B_{4} ?]
(7.22) Lemma. One has $G_{1}=\Psi_{2}$. More precisely, the homomorphism

$$
\begin{gathered}
\lambda=\left(\lambda_{1}, \lambda_{2}\right): G_{1} \rightarrow \Phi_{2} \times \Phi_{2}^{\mathrm{op}} \\
\lambda(A)=(O, O) \\
\lambda(B)=(P, P) \\
\lambda(C)=(U, V)
\end{gathered}
$$

exists and induces an isomorphism

$$
G_{1} \rightarrow \Psi_{2}=\left\{(f, g) \in \Phi_{2} \times \Phi_{2}^{\mathrm{op}} \mid f^{\mathrm{ab}}=\left(g^{\mathrm{ab}}\right)^{t}\right\}
$$

Proof: The λ_{i} are defined on the generators of G_{1}. We first show that the relations of G_{1} are respected.

Let $\bar{N} \triangleleft G_{1}$ be the normal subgroup generated by $(C \bar{A})^{2}$. For the quotient G_{1} / \bar{N} relation (7.19) can be dropped since

$$
C \bar{A} C A=(C \bar{A})^{2} E
$$

and $E^{2}=1$. Theorem (7.1) yields $G_{1} / N=\Phi_{2}$ with respect to the assignments for λ_{1} on generators.

For λ_{2} one considers similarly the normal subgroup $N \triangleleft G_{1}$ generated by $x_{1}=$ $(C A)^{2}$ and the quotient G_{1} / N. Again relation (7.19) can be dropped since

$$
C A C \bar{A}=(C A)^{2} E
$$

Corollary (7.6) yields $G_{1} / N=\Phi_{2}^{\mathrm{op}}$ because of

$$
\lambda_{2}(A B C)=\lambda_{2}(C) \lambda_{2}(B) \lambda_{2}(A)=V P O
$$

Having now defined λ, we recall a basic fact about the abelianization of Φ_{2}. The following sequence is exact (Magnus-Karras-Solitar 1976 [6, Corollary N4, p. 169])

$$
\begin{equation*}
1 \rightarrow \mathbf{F}_{2} \xrightarrow{\Gamma} \Phi_{2} \xrightarrow{\mathrm{ab}} \mathrm{GL}_{2}(\mathbf{Z}) \rightarrow 1 \tag{7.23}
\end{equation*}
$$

where

$$
\begin{gathered}
\Gamma: \mathbf{F}_{2} \rightarrow \Phi_{2} \\
x \mapsto \Gamma_{x} \\
\Gamma_{x}(y)=x y x^{-1}
\end{gathered}
$$

identifies \mathbf{F}_{2} with its group of inner automorphisms.
One has

$$
O^{\mathrm{ab}}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right), \quad P^{\mathrm{ab}}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad U^{\mathrm{ab}}=\left(\begin{array}{cc}
1 & 0 \\
1 & 1
\end{array}\right), \quad V^{\mathrm{ab}}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

Since O^{ab} and P^{ab} are symmetric and $V^{\mathrm{ab}}=\left(U^{\mathrm{ab}}\right)^{t}$ it follows that $\lambda\left(G_{1}\right) \subset \Psi_{2}$.
The homomorphism λ_{2} is surjective with kernel N. It remains to show that $\lambda_{1} \mid N$ induces an isomorphism onto $\Gamma\left(F_{2}\right)$.

Now N is generated as a group by $x_{1}, x_{2}($ see Lemma (7.21)) and one finds

$$
\left.\lambda_{1}\left(x_{2}\right)=(U O)^{2}: \quad e_{1} \mapsto e_{2}^{-1} e_{1} e_{2}\right)
$$

Thus

$$
\lambda_{1}\left(x_{2}\right)=\Gamma_{e_{2}}^{-1}
$$

and

$$
\lambda_{1}\left(x_{1}\right)=P \lambda_{1}\left(x_{2}\right) P=\Gamma_{P\left(e_{2}\right)}^{-1}=\Gamma_{e_{1}}^{-1}
$$

(7.24) Corollary (of the last proof).
(1) N is freely generated by x_{1}, x_{2}.
(2) $[N, \bar{N}]=1$
(3) The homomorphism λ_{1} is given by the action of G_{1} / \bar{N} on N with free generators x_{1}^{-1}, x_{2}^{-1}.

Proof: This is clear, except perhaps for (2). As we have seen

$$
\begin{aligned}
& \lambda(N)=\left(\Gamma\left(F_{2}\right), 1\right) \\
& \lambda(\bar{N})=\left(1, \Gamma\left(F_{2}\right)\right)
\end{aligned}
$$

Since λ is injective, the claim is follows.
7.5. Presentation of $\bar{\Psi}_{2}$. Define automorphisms

$$
\begin{gathered}
\mu, \sigma: G_{1} \rightarrow G_{1} \\
\mu(A)=\sigma(A)=A \\
\mu(B)=\sigma(B)=B \\
\mu(C)=A C^{-1} A \\
\sigma(C)=\widehat{B} C^{-1} \widehat{B}
\end{gathered}
$$

Let us verify that these definitions respect the relations of G_{1}. As for the relations (7.17), (7.18): These are preserved by $\mu($ since $A \bar{A}=\bar{A} A)$ and flipped by σ (since $\widehat{B} A \widehat{B}=\bar{A}$). Similarly, (7.19) is preserved by μ, σ. Finally,

$$
\begin{aligned}
& \mu(A B C)=A B A C^{-1} A=A C(A B C)^{-1}(A C)^{-1} \\
& \sigma(A B C)=A B \widehat{B} C^{-1} \widehat{B}=\widehat{B} C(A B C)^{-1}(\widehat{B} C)^{-1}
\end{aligned}
$$

shows that (7.20) is preserved by μ, σ as well.
Note that (for $u \in G_{1}$)

$$
\begin{aligned}
\mu^{2}(u) & =\sigma^{2}(u)=u \\
(\sigma \mu)(u) & =(A B) u(A B)^{-1} \\
(\mu \sigma)(u) & =(A B)^{-1} u(A B) \\
(\sigma \mu)^{2}(u) & =E u E
\end{aligned}
$$

We extend the group G_{1} to $G_{2}, G_{2}^{\prime}=G_{1} \rtimes \mathbf{Z}_{2}$ by adding the automorphisms μ, σ

$$
\begin{aligned}
& G_{2}=\left\langle G_{1}, X \mid X^{2}=(X A)^{2}=(X B)^{2}=(X C A)^{2}=1\right\rangle \\
& G_{2}^{\prime}=\left\langle G_{1}, T \mid T^{2}=(T A)^{2}=(T B)^{2}=(T C \widehat{B})^{2}=1\right\rangle
\end{aligned}
$$

Note that one of the relations (7.17), (7.18) can be dropped from G_{2}^{\prime} since they are flipped by conjugation with T.

The combined extension

$$
G_{3}=\left\langle G_{2}, T \mid T^{2}=(T A)^{2}=(T B)^{2}=(T C \widehat{B})^{2}=1,(T X)^{2}=E\right\rangle
$$

is an extension of G_{1} by $\mathbf{Z}_{2} \times \mathbf{Z}_{2}$.
Denote by $\varepsilon \in \Phi_{2}$ the automorphism

$$
\varepsilon=(O P)^{2}: \quad e_{i} \mapsto e_{i}^{-1} \quad(i=1,2)
$$

and let

$$
\begin{gathered}
\mu^{\prime}, \sigma^{\prime}: \Phi_{2} \times \Phi_{2}^{\mathrm{op}} \rightarrow \Phi_{2} \times \Phi_{2}^{\mathrm{op}} \\
\mu^{\prime}(f, g)=\left(\varepsilon f \varepsilon^{-1}, g\right) \\
\sigma^{\prime}(f, g)=\left(g^{-1}, f^{-1}\right)
\end{gathered}
$$

(7.25) Lemma. There are the equalities of homomorphisms $G_{1} \rightarrow \Phi_{2} \times \Phi_{2}^{\mathrm{op}}$:

$$
\begin{aligned}
& \lambda \circ \mu=\mu^{\prime} \circ \lambda \\
& \lambda \circ \sigma=\sigma^{\prime} \circ \lambda
\end{aligned}
$$

Proof: It suffices to check equality on the generators A, B, C of G_{1}. For A, B the claims are obvious. For C one finds

$$
\mu(C)=A C^{-1} A=\left\{\begin{array}{l}
E C E \bmod \bar{N} \\
C \bmod N
\end{array}\right.
$$

and

$$
\begin{aligned}
(\lambda \circ \sigma)(C) & =\left((O P O) U^{-1}(O P O),(O P O) V^{-1}(O P O)\right) \\
& =(O V O,(O P O) P O U O P(O P O)) \\
& =(O V O, \bar{O} U \bar{O}) \\
& =\left(V^{-1}, U^{-1}\right)
\end{aligned}
$$

(7.26) Corollary. One has $G_{3}=\bar{\Psi}_{2}$. More precisely, the homomorphism

$$
\begin{gathered}
\bar{\lambda}: G_{3} \rightarrow\left(\Phi_{2} \times \Phi_{2}^{\mathrm{op}}\right) \rtimes\left\{1, \sigma^{\prime}\right\} \\
\bar{\lambda} \mid G_{1}=(\lambda, 1) \\
\bar{\lambda}(X)=((\varepsilon, 1), 1) \\
\bar{\lambda}(T)=((1,1), \sigma) \\
\lambda=: G_{1} \rightarrow \Phi_{2} \times \Phi_{2}^{\mathrm{op}}
\end{gathered}
$$

induces an isomorphism $G_{3} \rightarrow \bar{\Psi}_{2}$.

References

[1] J. Conant and M. Kassabov, Hopf algebras and invariants of the Johnson cokernel, Algebr. Geom. Topol. 16 (2016), no. 4, 2325-2363. MR 35464676
[2] J. L. Dyer, E. Formanek, and E. K. Grossman, On the linearity of automorphism groups of free groups, Arch. Math. (Basel) 38 (1982), no. 5, 404-409. MR 66691111
[3] A. Karrass, A. Pietrowski, and D. Solitar, Some remarks on braid groups, Contributions to group theory, Contemp. Math., vol. 33, Amer. Math. Soc., Providence, RI, 1984, pp. 341-352. MR $767120 \quad 11$
[4] G. Kuperberg, Involutory Hopf algebras and 3-manifold invariants, Internat. J. Math. 2 (1991), no. 1, 41-66, [arXiv:math/9201301v1]. MR 10828367
[5] S. Mac Lane, Categories for the working mathematician, second ed., Graduate Texts in Mathematics, vol. 5, Springer-Verlag, New York, 1998. MR 17128726
[6] W. Magnus, A. Karrass, and D. Solitar, Combinatorial group theory, revised ed., Dover Publications, Inc., New York, 1976, Presentations of groups in terms of generators and relations. MR $04224345,8,13,17$
[7] S. Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, vol. 82 , Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1993. MR 1243637 9, 11
[8] B. Neumann, Die Automorphismengruppe der freien Gruppen, Math. Ann. 107 (1933), no. 1, 367-386. MR 1512806 5, 13
[9] J. Nielsen, Die Isomorphismengruppe der freien Gruppen, Math. Ann. 91 (1924), no. 3-4, 169-209. MR 151218813

Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany

Email address: rost at math.uni-bielefeld.de
$U R L$: www.math.uni-bielefeld.de/~rost

[^0]: Date: August 2, 2022; minor corrections on Sept. 29, 2022.

[^1]: ${ }^{1}$ Neumann 1933 [8, §1, p. 367; §4, p. 374] (Neumann uses the transposed product of Nielsen transformations). See also Magnus-Karras-Solitar 1976 (6, Problem 3.5.2, p. 169; pp. 163]).

[^2]: ${ }^{2}$ One uses (4.4) and the description of the kernel of $\Phi_{n} \rightarrow \mathrm{GL}_{n}(\mathbf{Z})$ in Magnus-Karras-Solitar 1976 [6, Theorem N4, p. 168].

[^3]: ${ }^{3}$ Dyer-Formanek-Grossman 1982 [2, p. 406], Karrass-Pietrowski-Solitar 1984 [3]

[^4]: ${ }^{4}$ Sweedler's notation is usually explained as an abbreviation for sums in (real) tensor products. I think one should rather set it up as a formal calculus for morphisms in \mathcal{H}. This wouldn't change anything in practice, but would be more satisfactory.

