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1. Introduction

Let f , g, h be 3 homogeneous quadratic forms in 3 variables. The resultant
Res(f, g, h) is the first non-trivial case of a resultant beyond the well known theory
of resultants of 2 homogeneous forms in 2 variables (basic references for resultants
are [2], [5]). First descriptions were given by Cayley [1, p. 119] and Sylvester [8], [5,
p. 118]. Eisenbud, Schreyer and Weyman presented in [3, Introduction] a Bezout
formula which describes Res(f, g, h) as the Pfaffian of a certain alternating 8 × 8-
matrix whose entries are linear in the Plücker coordinates of f ∧ g ∧ h (the matrix
is reproduced in Section 7).

In this text we describe a comparatively simple presentation of Res(f, g, h). After
an appropriate choice of basis, the resulting expression coincides with that of [3,
Introduction].

Let V be a locally free module of rank 3 over a ring R. Let further

U =
V ⊗ Λ2V

Λ3V
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Here we consider Λ3V as subspace of V ⊗Λ2V via the natural embeddings ΛkV ⊂
V ⊗k. Another way to present U is as the Lie algebra of PGL(V ) tensored with the
line bundle Λ3V :

U =
End(V )

R · idV
⊗ Λ3V

One has rankU = 8. Let

Pf : Λ2U → Λ8U = (Λ3V )⊗8

denote the Pfaffian characterized by

Pf(u1 ∧ u2 + u3 ∧ u4 + u5 ∧ u6 + u7 ∧ u8) = u1 ∧ · · · ∧ u8

For ω ∈ Λ2U the square of Pf(ω) is the determinant of an alternating matrix
representing ω. Moreover 4! Pf(ω) = ω4.

Here are the main results.

Proposition 1. There exists a unique morphism of gl(V )-modules

Φ: Λ3S2V → Λ2U

such that
Φ(xy ∧ yz ∧ zx) = [x⊗ y ∧ z] ∧ [y ⊗ x ∧ z]

for x, y, z ∈ V .
Let

F (f, g, h) = Pf
(

Φ(f ∧ g ∧ h)
)

(f, g, h ∈ S2V )

Then
F (f, g, h) = 0

whenever f , g, h have a common zero. Moreover

F (x2, y2, z2) = (x ∧ y ∧ z)⊗8

Corollary. For f , g, h ∈ S2V one has

Res(f, g, h) = F (f, g, h)

Moreover one has:

Proposition 2. With respect to a basis of V and an appropriate basis of U ,
the alternating 8 × 8-matrix corresponding to Φ (with entries from the dual space
of Λ3S2V ) is exactly the one presented in [3, Introduction].

I don’t have a heuristic argument why the morphism Φ does the job. Maybe one
should try to follow the methods in [3].

The starting point was a rather naive ad hoc search. Looking for a Bezout
formula (an expression of the resultant in terms of Plücker coordinates) means to
find an invariant quartic form on

Λ3S2V

which yields the resultant. Over Q the space of invariant quartic forms on Λ3S2V
is 6-dimensional and in principle one should be able to write down the forms in a
coordinate free way over Z. The search was greatly encouraged and helped by the
presentation of the 8 × 8-matrix in [3, Introduction]. Eventually the morphism Φ
showed up.

The text contains a lot of explicit computations. Most of them are not really
necessary to recognize F as the resultant. However they are used to get the 8× 8-
matrix. Anyway, we find them illustrative and useful.
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Naturally, an understanding of the GL(V )-module Λ3S2V and its variant

Λ3S2V =
(

Λ3S2(V #)
)#

is in order (W# denotes the dual of W ). Section 5 contains some related remarks.
There are the two morphisms

J, η : Λ3S2V → Λ3S2V

J : [x]2 ∧ [y]2 ∧ [z]2 7→ x2 ∧ y2 ∧ z2

η : [x]2 ∧ [y]2 ∧ [z]2 7→ xy ∧ yz ∧ zx

The morphism J is induced from the standard morphism

S2V → S2V

(passage from symmetric bilinear forms to quadratic forms) and is not an iso-
morphism in characteristic 2. The morphism η however is an isomorphism for
rankV = 3. Once the bijectivity of η is established, the construction of Φ becomes
simple (see Section 5.1).

The first construction of Φ in Section 3 however bypasses η and the material of
Section 5 is not used elsewhere.

2. Preliminaries

2.1. Basic notations. Let V be a locally free R-module of finite rank. The dual
module is denoted by

V # = HomR(V,R)

and the symmetric resp. exterior powers are denoted as usual by SkV , ΛkV . More-
over let

SkV = (V ⊗k)Σk ⊂ V ⊗k

be the module of symmetric k-tensors. One has

(SkV )# = Sk(V
#)

(ΛkV )# = Λk(V #)

The module S•V is the divided power algebra of V , see e.g. [9]. For elements in
SkV we use the notations

[x]k = x⊗ · · · ⊗ x ∈ SkV ⊂ V ⊗k

with x ∈ V and the product is denoted by

SkV ⊗ ShV → Sk+hV

α⊗ β 7→ α ∗ β

For instance

[x]k ∗ [x]h =

(

k + h

k

)

[x]k+h

x ∗ y = x⊗ y + y ⊗ x = [x+ y]2 − [x]2 − [y]2
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2.2. Conventions for a basis. We assume rankV = 3.
Given a basis ei (i = 0, 1, 2), we denote the dual basis by fi. Thus

V = Re0 ⊕Re1 ⊕Re2

V # = Rf0 ⊕Rf1 ⊕Rf2

with fi(ej) = δij .
The elements

θij = ei ⊗ fj

form a basis of gl(V ) = End(V ) = V ⊗ V #.
We write

ǫi = [θii] ∈ pgl(V ) =
End(V )

R · idV
for the image of θii = ei ⊗ fi in pgl(V ).

Then

ǫ0 + ǫ1 + ǫ2 = 0

and the elements

ǫ1, ǫ2, θij (i 6= j)

form a basis of pgl(V ).
Here are basis elements of some line bundles:

e0 ∧ e1 ∧ e2 ∈ Λ3V

e20 ∧ e21 ∧ e22 ∧ e0e1 ∧ e1e2 ∧ e2e0 ∈ Λ6S2V

[e0]2 ∧ [e1]2 ∧ [e2]2 ∧ e0∗e1 ∧ e1∗e2 ∧ e2∗e0 ∈ Λ6S2V

We use them to identify the line bundles with R or with each other.

3. Definition of Φ

3.1. The morphism Ψ. We start with the morphism

Ψ1 : Λ
2S2V ⊗ S2V → Λ2(V ⊗ Λ2V )

[x]2 ∧ [y]2 ⊗ [z]2 7→ (x ⊗ y ∧ z) ∧ (y ⊗ x ∧ z)

Remark. The term on the right is a homogeneous polynomial of degree 2 in each
of x, y, z. By definition such a polynomial is a linear morphism

S2V ⊗ S2V ⊗ S2V → Λ2(V ⊗ Λ2V )

In fact it defines a morphism of strict polynomial functors (see [4, §2], [7, §2,
pp. 702]) over R = Z. By the skew symmetry in x, y, it factors through Λ2S2V ⊗
S2V .

Consider the natural inclusion

Λ3V → V ⊗ Λ2V

x0 ∧ x1 ∧ x2 7→
∑

i

xi ⊗ xi+1 ∧ xi−1

with the indices taken mod 3. Put

U =
V ⊗ Λ2V

Λ3V
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After passing to U , Ψ1 becomes entirely alternating (if u0 + u1 + u2 = 0, then
u0 ∧ u1 = u1 ∧ u2) and yields the morphism

Ψ: Λ3S2V → Λ2U

[x]2 ∧ [y]2 ∧ [z]2 7→ [x⊗ y ∧ z] ∧ [y ⊗ x ∧ z]

Remark. One may write Ψ in a different way using the exact complex

0 → Λ3V → V ⊗ Λ2V
κ
−→ S2V ⊗ V

µ
−→ S3V → 0

where

κ(x⊗ y ∧ z) = xy ⊗ z − xz ⊗ y

and µ is the multiplication. The morphism κ identifies U with a subbundle of
S2V ⊗ V and so no essential information gets lost when composing with κ. One
has

Λ2κ ◦Ψ: Λ3S2V → Λ2(S2V ⊗ V )

[x0]2 ∧ [x1]2 ∧ [x2]2 7→
∑

i

(xixi+1 ⊗ xi−1) ∧ (xixi−1 ⊗ xi+1)

I haven’t looked at the corresponding presentation Λ2κ ◦ Φ of Φ in detail.

3.2. Duality for rank 3. From now on we assume rankV = 3.
One has

Λ2V = V # ⊗ Λ3V

V ⊗ Λ2V = End(V )⊗ Λ3V

Moreover

U = pgl(V )⊗ Λ3V, pgl(V ) =
End(V )

R · idV

and Ψ becomes a morphism

Ψ: Λ3S2V → Λ2 pgl(V )⊗ (Λ3V )⊗2

In coordinates one has

Ψ([e0]2 ∧ [e1]2 ∧ [e2]2) = −ǫ0 ∧ ǫ1 = ǫ2 ∧ ǫ1

The non-degenerate pairing

Λ3S2V ⊗ Λ3S2V → Λ6S2V = (Λ3V )⊗4

induces an isomorphism

H : Λ3S2V →
(

Λ3S2V
)#

⊗ Λ6S2V = Λ3S2(V
#)⊗ (Λ3V )⊗4

In coordinates one finds (with appropriate sign in the identification Λ6S2V = R)

H(e0e1 ∧ e1e2 ∧ e2e0) = [f0]2 ∧ [f1]2 ∧ [f2]2
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3.3. The morphism Φ. We denote by ΨV #

the morphism Ψ with V replaced
by V # and define

Φ = ΨV #

◦H

as the composite of

Λ3S2V
H
−→ Λ3S2(V

#)⊗ (Λ3V )⊗4 ΨV
#

−−−→ Λ2 pgl(V )⊗ (Λ3V )⊗2

In coordinates, Φ is the morphism

Λ3S2V → Λ2 gl(V )

with
e0e1 ∧ e1e2 ∧ e2e0 7→ ǫ2 ∧ ǫ1

Remark. The element ǫ2∧ ǫ1 is a generator of Λ2C, where C ⊂ pgl(V ) is the Cartan
subalgebra corresponding to the basis. It follows that the image of Φ is in the kernel
of the (lifted) Lie bracket

[ , ] : Λ2 pgl(V ) → sl(V )

More precisely, there is the short exact sequence

0 → Λ3S2V ⊗ (Λ3V #)⊗2 Φ
−→ Λ2 pgl(V )

[ , ]
−−→ sl(V ) → 0

Indeed, the formulas in Section 6 (or an inspection of the 8×8-matrix in Section 7)
show that the image of Φ is a subbundle (the dual of Φ is an epimorphism) and the
claim follows from rank reasons.

4. Identifying the resultant

We assume rankV = 3. Let us recall a characterization of the resultant, for the
special case of three forms gi ∈ S2V (i = 0, 1, 2).

As definition of the resultant we take [2, Définition 3, pp. 348]. The following
claim follows then from [2, Corollaire, pp. 346] and degree reasons.

Lemma. Assume R = Z. Let F (g0, g1, g2) be a homogeneous polynomial in the gi
of degree 12. If F (g0, g1, g2) = 0 whenever the gi have a common non-trivial zero
(over say algebraically closed fields), then F (g0, g1, g2) is a scalar multiple of the
resultant Res(g0, g1, g2). �

Remark. To give a point (=section) in the projective space

P(V ) = ProjS•V

means to give a codimension 1 subbundle W of V . Then L = V/W is a line bundle.
This way a point in P(V ) is given by a short exact sequence

0 → W −→ V
λ
−→ L → 0

with rankL = 1.

Let gi ∈ S2V (i = 0, 1, 2) and assume that there is a common zero in P(V ).
This means that there is a line bundle L and an epimorphism

λ : V → L

such that
S2λ(gi) = 0 (i = 0, 1, 2)

(S2λ(g) ∈ L⊗2 is the evaluation of g at the point λ.)
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Let

W = kerλ

The morphism λ induces a morphism λ̃ on pgl(V ), namely

λ̃ :
V ⊗ V #

R · idV
→ L⊗

V #

L#
= L⊗W#

[v ⊗ α] 7→ λ(v) ⊗ (α|W )

λ̃ is an epimorphism and ker λ̃ has rank 6.

Lemma.

Φ
(

Λ3(kerS2λ)
)

⊂ Λ2(ker λ̃)⊗ (Λ3V )⊗2

Proof. I checked by inspection of the formulas in Section 6: One takes a basis with
f0 = λ. Using that θ1i, θ2i leave f0 invariant, one finds that it suffices to check that

Φ(A) = ǫ2 ∧ ǫ1 ∈ Λ2(ker f̃0)

which is obvious.
Certainly there is an intrinsic proof without explicit computations. �

Since Λ8(ker λ̃) = 0, the Pfaffian vanishes on g0∧g1∧g2 if gi ∈ kerS2λ for i = 0,
1, 2.

Hence for arbitrary gi one has

Pf
(

Φ(g0 ∧ g1 ∧ g2)
)

= aRes(g0, g1, g2)

for some a ∈ Z (assuming R = Z). The computation at the very end of Section 6
shows

Pf
(

Φ(e20 ∧ e21 ∧ e22)
)

= ±1

and therefore a = ±1. (The sign is not important. It depends on some choices
anyway.)

5. Alternative definition of Φ

The material of this section is not really needed elsewhere, but hopefully illus-
trative.

5.1. The isomorphism Λ3S2V → Λ3S2V (rankV = 3). Let

η : Λ3S2V → Λ3S2V

[x]2 ∧ [y]2 ∧ [z]2 7→ xy ∧ yz ∧ zx

Remark. For rankV = 3, an explicit computation of η is provided below. For
instance one has

η(e0∗e1 ∧ e1∗e2 ∧ e2∗e0) = e20 ∧ e21 ∧ e22 − 2e0e1 ∧ e1e2 ∧ e2e0
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Lemma. If rankV = 3, then η is an isomorphism.

Proof. This is evident from the explicit computations below. However there is a
more conceptual proof. Namely, the inverse of η is the dual of η in the appropriate
sense. More precisely, one has

(H ◦ η)([e0]2 ∧ [e1]2 ∧ [e2]2) = [f0]2 ∧ [f1]2 ∧ [f2]2

with H as in Section 3.2. It follows that H ◦ η is an epimorphism (for any V the
elements [x]2∧ [y]2∧ [z]2 generate Λ3S2V ). But then H ◦η must be an isomorphism
since both modules are locally free of the same rank. �

One may now define Φ as

Φ = Ψ ◦ η−1 : Λ3S2V → Λ2U

Remark. The morphism η is defined for any V of arbitrary rank r. It is another
example of a morphism of strict polynomial functors. If r ≤ 2, it is easy to see that
η is an isomorphism. In general, coker η is annihilated by 8 (hint: the elements
x2 ∧ y2 ∧ z2 are in the image of η). In characteristic 2 there is an epimorphism
coker η → Λ4V ⊗ S2V .

5.2. Some explicit computations. The following tables describe some actions
of elements of sl(V ) and yield generators of the sl(V )-modules Λ3S2V resp. Λ3S2V .
The dim-slot shows the rank of the subspace generated by all permutations of
indices.

Table 1.

A = [e0]2 ∧ [e1]2 ∧ [e2]2 (dim 1)

B = θ12(A) = [e0]2 ∧ [e1]2 ∧ e1∗e2 (dim 6)

θ02(B) = [e0]2 ∧ [e1]2 ∧ e1∗e0 (dim 3)

θ10(B) = e0∗e1 ∧ [e1]2 ∧ e1∗e2 (dim 3)

C = θ20(B) = e2∗e0 ∧ [e1]2 ∧ e1∗e2 (dim 6)

D = θ01(C) = e2∗e0 ∧ e0∗e1 ∧ e1∗e2 (dim 1)

Table 2.

A = e0e1 ∧ e1e2 ∧ e2e0 (dim 1)

B = θ12(A) = e0e1 ∧ e21 ∧ e2e0 (dim 6)

θ02(B) = e0e1 ∧ e21 ∧ e20 (dim 3)

θ10(B) = e0e1 ∧ e21 ∧ e1e2 (dim 3)

C = θ20(B) = e0e1 ∧ e21 ∧ e22 + e1e2 ∧ e21 ∧ e2e0

= e0e1 ∧ e21 ∧ e22 +B|e0↔e2 (dim 6)

D = θ01(C) = e20 ∧ e21 ∧ e22 + 2e1e2 ∧ e0e1 ∧ e2e0

= e20 ∧ e21 ∧ e22 − 2A (dim 1)

Corollary. Λ3S2V resp. Λ3S2V are as sl(V )-modules generated by

[e0]2 ∧ [e1]2 ∧ [e2]2, e0e1 ∧ e1e2 ∧ e2e0

Remark. Clearly the tables describe the isomorphism η in terms of basis elements.
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5.3. Decomposition of Λ3S2V . We conclude with some exercises (rankV = 3).

Lemma. There is a short exact sequence of PGL(V )-modules

0 → S3V ⊗ Λ3V # → Λ3S2V ⊗
(

Λ3V #
)⊗2

→ S3(V #)⊗ Λ3V → 0

This is a “must know” on Λ3S2V (rankV = 3), albeit not needed in this text.
It is the integral version of the classical decomposition Λ3S2V = S3V ⊕ S3(V #)
of SL(3)-modules over Q and related with classical constructions for plane cubics,
like the Hessian curve and the invariants c4, c6 of elliptic curves [6, pp. 188].

The joy of proof is left to the reader. The same goes for

Lemma. Let

J : Λ3S2V → Λ3S2V

[x]2 ∧ [y]2 ∧ [z]2 7→ x2 ∧ y2 ∧ z2

and put

T = J ◦ η−1 ∈ EndGL(V )(S
2V )

Then

(T − 4)(T + 2) = 0

6. Computation of Φ

The purpose of the following explicit computations is to verify:

Lemma. With respect to the basis

θ20, −θ21, θ10, θ12, −θ01, θ02, −ǫ1, ǫ2

of pgl(V ), the morphism Φ is given by the matrix in Section 7 (which equals that
of [3, Introduction]).

To compute Φ on all basis elements, we apply appropriate elements of the Lie
algebra sl(V ). Actually we consider the actions of the universal enveloping algebra.
For instance we understand

θ21θ01(Y ) = θ21
(

θ01(Y )
)

The action of sl(V ) on S2V is given by

θij(ehek) = δjheiek + δjkehei

and the action of sl(V ) on pgl(V ) is given by commutators.
The brackets [ijk] stand for the Plücker basis with respect to the ordered basis

0 1 2 3 4 5
e20 e0e1 e2e0 e21 e1e2 e22
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Here are the computations:

1 element with weights 2, 2, 2 of type xy ∧ xz ∧ yz

−[124] = A = e0e1 ∧ e1e2 ∧ e2e0

7→ X = ǫ2 ∧ ǫ1 = ǫ1 ∧ ǫ0

6 elements with weights 3, 2, 1 of type x2 ∧ xy ∧ yz

−[024] = θ01(A) = e20 ∧ e1e2 ∧ e2e0

7→ θ01(X) = −θ01 ∧ ǫ2

[234] = θ10(A) = e21 ∧ e1e2 ∧ e2e0

7→ θ10(X) = θ10 ∧ ǫ2

−[123] = θ12(A) = e0e1 ∧ e21 ∧ e2e0

7→ θ12(X) = −θ12 ∧ ǫ0

−[125] = θ21(A) = e0e1 ∧ e22 ∧ e2e0

7→ θ21(X) = θ21 ∧ ǫ0

[145] = θ20(A) = e0e1 ∧ e1e2 ∧ e22

7→ θ20(X) = −θ20 ∧ ǫ1

[014] = θ02(A) = e0e1 ∧ e1e2 ∧ e20

7→ θ02(X) = θ02 ∧ ǫ1

3 elements with weights 3, 3, 0 of type x2 ∧ xy ∧ y2

−[025] = θ21θ01(A) = e20 ∧ e22 ∧ e2e0

7→ θ21θ01(X) = θ01 ∧ θ21

[013] = θ02θ12(A) = e0e1 ∧ e21 ∧ e20

7→ θ02θ12(X) = θ12 ∧ θ02

[345] = θ10θ20(A) = e21 ∧ e1e2 ∧ e22

7→ θ10θ20(X) = θ20 ∧ θ10

3 elements with weights 4, 1, 1 of type x2 ∧ xy ∧ xz

[012] = θ02θ01(A) = e20 ∧ e1e0 ∧ e2e0

7→ θ02θ01(X) = θ02 ∧ θ01

[134] = θ10θ12(A) = e0e1 ∧ e21 ∧ e2e1

7→ θ10θ12(X) = θ10 ∧ θ12

[245] = θ21θ20(A) = e0e2 ∧ e1e2 ∧ e22

7→ θ21θ20(X) = θ21 ∧ θ20
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6 elements with weights 3, 2, 1 of type x2 ∧ xy ∧ z2

[045] = θ20θ01(A) = e20 ∧ e1e2 ∧ e22

7→ θ20θ01(X) = −θ20 ∧ θ01 − θ21 ∧ ǫ2

[235] = θ21θ10(A) = e21 ∧ e22 ∧ e2e0

7→ θ21θ10(X) = θ21 ∧ θ10 + θ20 ∧ ǫ2

−[023] = θ01θ12(A) = e20 ∧ e21 ∧ e2e0

7→ θ01θ12(X) = −θ01 ∧ θ12 − θ02 ∧ ǫ0

[015] = θ02θ21(A) = e0e1 ∧ e22 ∧ e20

7→ θ02θ21(X) = θ02 ∧ θ21 + θ01 ∧ ǫ0

[135] = θ12θ20(A) = e0e1 ∧ e21 ∧ e22

7→ θ12θ20(X) = −θ12 ∧ θ20 − θ10 ∧ ǫ1

[034] = θ10θ02(A) = e21 ∧ e1e2 ∧ e20

7→ θ10θ02(X) = θ10 ∧ θ02 + θ12 ∧ ǫ1

1 element with weights 2, 2, 2 of type x2 ∧ y2 ∧ z2

[035] = θ12θ20θ01(A) = e20 ∧ e21 ∧ e22

7→ θ12θ20θ01(X) = θ01 ∧ θ10 + θ20 ∧ θ02 + θ12 ∧ θ21

+ ǫ2 ∧ ǫ1

7. The alternating 8× 8-matrix

θ20 −θ21 θ10 θ12 −θ01 θ02 −ǫ1 ǫ2

θ20 0 [245] [345] [135] [045] [035] [145] [235]

−θ21 −[245] 0 −[235] [035] [025] [015] [125] −[125]+[045]

θ10 −[345] [235] 0 [134] [035] [034] [135] [234]

θ12 −[135] −[035] −[134] 0 [023] [013] [123]−[034] −[123]

−θ01 −[045] −[025] −[035] −[023] 0 [012] −[015] −[024]+[015]

θ02 −[035] −[015] −[034] −[013] −[012] 0 [023]−[014] −[023]

−ǫ1 −[145] −[125] −[135] −[123]+[034] [015] −[023]+[014] 0 −[124]+[035]

ǫ2 −[235] [125]−[045] −[234] [123] [024]−[015] [023] [124]−[035] 0
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