ON THE RESULTANT OF THREE TERNARY QUADRATIC FORMS

MARKUS ROST

Contents

1. Introduction 1
2. Preliminaries 3
2.1. Basic notations 3
2.2. Conventions for a basis 4
3. Definition of Φ 4
3.1. The morphism Ψ 4
3.2. Duality for rank 3 5
3.3. The morphism Φ 6
4. Identifying the resultant 6
5. Alternative definition of Φ 7
5.1. The isomorphism $\Lambda^{3} S_{2} V \rightarrow \Lambda^{3} S^{2} V(\operatorname{rank} V=3)$ 7
5.2. Some explicit computations 8
5.3. Decomposition of $\Lambda^{3} S^{2} V$ 9
6. Computation of Φ 9
7. The alternating 8×8-matrix 11
References 12

1. Introduction

Let f, g, h be 3 homogeneous quadratic forms in 3 variables. The resultant $\operatorname{Res}(f, g, h)$ is the first non-trivial case of a resultant beyond the well known theory of resultants of 2 homogeneous forms in 2 variables (basic references for resultants are $[2],[5])$. First descriptions were given by Cayley $[1$, p. 119] and Sylvester $[8],[5$, p. 118]. Eisenbud, Schreyer and Weyman presented in [3, Introduction] a Bezout formula which describes $\operatorname{Res}(f, g, h)$ as the Pfaffian of a certain alternating 8×8 matrix whose entries are linear in the Plücker coordinates of $f \wedge g \wedge h$ (the matrix is reproduced in Section 7).

In this text we describe a comparatively simple presentation of $\operatorname{Res}(f, g, h)$. After an appropriate choice of basis, the resulting expression coincides with that of [3, Introduction].

Let V be a locally free module of rank 3 over a ring R. Let further

$$
U=\frac{V \otimes \Lambda^{2} V}{\Lambda^{3} V}
$$

[^0]Here we consider $\Lambda^{3} V$ as subspace of $V \otimes \Lambda^{2} V$ via the natural embeddings $\Lambda^{k} V \subset$ $V^{\otimes k}$. Another way to present U is as the Lie algebra of PGL (V) tensored with the line bundle $\Lambda^{3} V$:

$$
U=\frac{\operatorname{End}(V)}{R \cdot \operatorname{id}_{V}} \otimes \Lambda^{3} V
$$

One has $\operatorname{rank} U=8$. Let

$$
\operatorname{Pf}: \Lambda^{2} U \rightarrow \Lambda^{8} U=\left(\Lambda^{3} V\right)^{\otimes 8}
$$

denote the Pfaffian characterized by

$$
\operatorname{Pf}\left(u_{1} \wedge u_{2}+u_{3} \wedge u_{4}+u_{5} \wedge u_{6}+u_{7} \wedge u_{8}\right)=u_{1} \wedge \cdots \wedge u_{8}
$$

For $\omega \in \Lambda^{2} U$ the square of $\operatorname{Pf}(\omega)$ is the determinant of an alternating matrix representing ω. Moreover $4!\operatorname{Pf}(\omega)=\omega^{4}$.

Here are the main results.
Proposition 1. There exists a unique morphism of $\operatorname{gl}(V)$-modules

$$
\Phi: \Lambda^{3} S^{2} V \rightarrow \Lambda^{2} U
$$

such that

$$
\Phi(x y \wedge y z \wedge z x)=[x \otimes y \wedge z] \wedge[y \otimes x \wedge z]
$$

for $x, y, z \in V$.
Let

$$
F(f, g, h)=\operatorname{Pf}(\Phi(f \wedge g \wedge h)) \quad\left(f, g, h \in S^{2} V\right)
$$

Then

$$
F(f, g, h)=0
$$

whenever f, g, h have a common zero. Moreover

$$
F\left(x^{2}, y^{2}, z^{2}\right)=(x \wedge y \wedge z)^{\otimes 8}
$$

Corollary. For $f, g, h \in S^{2} V$ one has

$$
\operatorname{Res}(f, g, h)=F(f, g, h)
$$

Moreover one has:
Proposition 2. With respect to a basis of V and an appropriate basis of U, the alternating 8×8-matrix corresponding to Φ (with entries from the dual space of $\Lambda^{3} S^{2} V$) is exactly the one presented in [3, Introduction].

I don't have a heuristic argument why the morphism Φ does the job. Maybe one should try to follow the methods in [3].

The starting point was a rather naive ad hoc search. Looking for a Bezout formula (an expression of the resultant in terms of Plücker coordinates) means to find an invariant quartic form on

$$
\Lambda^{3} S^{2} V
$$

which yields the resultant. Over \mathbf{Q} the space of invariant quartic forms on $\Lambda^{3} S^{2} V$ is 6 -dimensional and in principle one should be able to write down the forms in a coordinate free way over \mathbf{Z}. The search was greatly encouraged and helped by the presentation of the 8×8-matrix in [3, Introduction]. Eventually the morphism Φ showed up.

The text contains a lot of explicit computations. Most of them are not really necessary to recognize F as the resultant. However they are used to get the 8×8 matrix. Anyway, we find them illustrative and useful.

Naturally, an understanding of the GL (V)-module $\Lambda^{3} S^{2} V$ and its variant

$$
\Lambda^{3} S_{2} V=\left(\Lambda^{3} S^{2}\left(V^{\#}\right)\right)^{\#}
$$

is in order ($W^{\#}$ denotes the dual of W). Section 5 contains some related remarks. There are the two morphisms

$$
\begin{gathered}
J, \eta: \Lambda^{3} S_{2} V \rightarrow \Lambda^{3} S^{2} V \\
J:[x]_{2} \wedge[y]_{2} \wedge[z]_{2} \mapsto x^{2} \wedge y^{2} \wedge z^{2} \\
\eta:[x]_{2} \wedge[y]_{2} \wedge[z]_{2} \mapsto x y \wedge y z \wedge z x
\end{gathered}
$$

The morphism J is induced from the standard morphism

$$
S_{2} V \rightarrow S^{2} V
$$

(passage from symmetric bilinear forms to quadratic forms) and is not an isomorphism in characteristic 2. The morphism η however is an isomorphism for $\operatorname{rank} V=3$. Once the bijectivity of η is established, the construction of Φ becomes simple (see Section 5.1).

The first construction of Φ in Section 3 however bypasses η and the material of Section 5 is not used elsewhere.

2. Preliminaries

2.1. Basic notations. Let V be a locally free R-module of finite rank. The dual module is denoted by

$$
V^{\#}=\operatorname{Hom}_{R}(V, R)
$$

and the symmetric resp. exterior powers are denoted as usual by $S^{k} V, \Lambda^{k} V$. Moreover let

$$
S_{k} V=\left(V^{\otimes k}\right)^{\Sigma_{k}} \subset V^{\otimes k}
$$

be the module of symmetric k-tensors. One has

$$
\begin{aligned}
\left(S^{k} V\right)^{\#} & =S_{k}\left(V^{\#}\right) \\
\left(\Lambda^{k} V\right)^{\#} & =\Lambda^{k}\left(V^{\#}\right)
\end{aligned}
$$

The module $S_{\bullet} V$ is the divided power algebra of V, see e.g. [9]. For elements in $S_{k} V$ we use the notations

$$
[x]_{k}=x \otimes \cdots \otimes x \in S_{k} V \subset V^{\otimes k}
$$

with $x \in V$ and the product is denoted by

$$
\begin{gathered}
S_{k} V \otimes S_{h} V \rightarrow S_{k+h} V \\
\alpha \otimes \beta \mapsto \alpha * \beta
\end{gathered}
$$

For instance

$$
\begin{aligned}
{[x]_{k} *[x]_{h} } & =\binom{k+h}{k}[x]_{k+h} \\
x * y & =x \otimes y+y \otimes x=[x+y]_{2}-[x]_{2}-[y]_{2}
\end{aligned}
$$

2.2. Conventions for a basis. We assume rank $V=3$.

Given a basis $e_{i}(i=0,1,2)$, we denote the dual basis by f_{i}. Thus

$$
\begin{aligned}
V & =R e_{0} \oplus R e_{1} \oplus R e_{2} \\
V^{\#} & =R f_{0} \oplus R f_{1} \oplus R f_{2}
\end{aligned}
$$

with $f_{i}\left(e_{j}\right)=\delta_{i j}$.
The elements

$$
\theta_{i j}=e_{i} \otimes f_{j}
$$

form a basis of $\operatorname{gl}(V)=\operatorname{End}(V)=V \otimes V^{\#}$.
We write

$$
\epsilon_{i}=\left[\theta_{i i}\right] \in \operatorname{pgl}(V)=\frac{\operatorname{End}(V)}{R \cdot \mathrm{id}_{V}}
$$

for the image of $\theta_{i i}=e_{i} \otimes f_{i}$ in $\operatorname{pgl}(V)$.
Then

$$
\epsilon_{0}+\epsilon_{1}+\epsilon_{2}=0
$$

and the elements

$$
\epsilon_{1}, \quad \epsilon_{2}, \quad \theta_{i j}(i \neq j)
$$

form a basis of $\operatorname{pgl}(V)$.
Here are basis elements of some line bundles:

$$
\begin{aligned}
& e_{0} \wedge e_{1} \wedge e_{2} \in \Lambda^{3} V \\
& e_{0}^{2} \wedge e_{1}^{2} \wedge e_{2}^{2} \wedge e_{0} e_{1} \wedge e_{1} e_{2} \wedge e_{2} e_{0} \in \Lambda^{6} S^{2} V \\
& {\left[e_{0}\right]_{2} \wedge\left[e_{1}\right]_{2} \wedge\left[e_{2}\right]_{2} \wedge e_{0} * e_{1} \wedge e_{1} * e_{2} \wedge e_{2} * e_{0} \in \Lambda^{6} S_{2} V}
\end{aligned}
$$

We use them to identify the line bundles with R or with each other.

3. Definition of Φ

3.1. The morphism Ψ. We start with the morphism

$$
\begin{gathered}
\Psi_{1}: \Lambda^{2} S_{2} V \otimes S_{2} V \rightarrow \Lambda^{2}\left(V \otimes \Lambda^{2} V\right) \\
{[x]_{2} \wedge[y]_{2} \otimes[z]_{2} \mapsto(x \otimes y \wedge z) \wedge(y \otimes x \wedge z)}
\end{gathered}
$$

Remark. The term on the right is a homogeneous polynomial of degree 2 in each of x, y, z. By definition such a polynomial is a linear morphism

$$
S_{2} V \otimes S_{2} V \otimes S_{2} V \rightarrow \Lambda^{2}\left(V \otimes \Lambda^{2} V\right)
$$

In fact it defines a morphism of strict polynomial functors (see [4, §2], [7, §2, pp. 702]) over $R=\mathbf{Z}$. By the skew symmetry in x, y, it factors through $\Lambda^{2} S_{2} V \otimes$ $S_{2} V$.

Consider the natural inclusion

$$
\begin{aligned}
\Lambda^{3} V & \rightarrow V \otimes \Lambda^{2} V \\
x_{0} \wedge x_{1} \wedge x_{2} & \mapsto \sum_{i} x_{i} \otimes x_{i+1} \wedge x_{i-1}
\end{aligned}
$$

with the indices taken mod 3. Put

$$
U=\frac{V \otimes \Lambda^{2} V}{\Lambda^{3} V}
$$

After passing to U, Ψ_{1} becomes entirely alternating (if $u_{0}+u_{1}+u_{2}=0$, then $\left.u_{0} \wedge u_{1}=u_{1} \wedge u_{2}\right)$ and yields the morphism

$$
\begin{gathered}
\Psi: \Lambda^{3} S_{2} V \rightarrow \Lambda^{2} U \\
{[x]_{2} \wedge[y]_{2} \wedge[z]_{2} \mapsto[x \otimes y \wedge z] \wedge[y \otimes x \wedge z]}
\end{gathered}
$$

Remark. One may write Ψ in a different way using the exact complex

$$
0 \rightarrow \Lambda^{3} V \rightarrow V \otimes \Lambda^{2} V \xrightarrow{\kappa} S^{2} V \otimes V \xrightarrow{\mu} S^{3} V \rightarrow 0
$$

where

$$
\kappa(x \otimes y \wedge z)=x y \otimes z-x z \otimes y
$$

and μ is the multiplication. The morphism κ identifies U with a subbundle of $S^{2} V \otimes V$ and so no essential information gets lost when composing with κ. One has

$$
\begin{aligned}
& \Lambda^{2} \kappa \circ \Psi: \Lambda^{3} S_{2} V \rightarrow \Lambda^{2}\left(S^{2} V \otimes V\right) \\
& {\left[x_{0}\right]_{2} \wedge\left[x_{1}\right]_{2} \wedge\left[x_{2}\right]_{2} } \mapsto \sum_{i}\left(x_{i} x_{i+1} \otimes x_{i-1}\right) \wedge\left(x_{i} x_{i-1} \otimes x_{i+1}\right)
\end{aligned}
$$

I haven't looked at the corresponding presentation $\Lambda^{2} \kappa \circ \Phi$ of Φ in detail.
3.2. Duality for rank 3 . From now on we assume $\operatorname{rank} V=3$.

One has

$$
\begin{aligned}
\Lambda^{2} V & =V^{\#} \otimes \Lambda^{3} V \\
V \otimes \Lambda^{2} V & =\operatorname{End}(V) \otimes \Lambda^{3} V
\end{aligned}
$$

Moreover

$$
U=\operatorname{pgl}(V) \otimes \Lambda^{3} V, \quad \operatorname{pgl}(V)=\frac{\operatorname{End}(V)}{R \cdot \operatorname{id}_{V}}
$$

and Ψ becomes a morphism

$$
\Psi: \Lambda^{3} S_{2} V \rightarrow \Lambda^{2} \operatorname{pgl}(V) \otimes\left(\Lambda^{3} V\right)^{\otimes 2}
$$

In coordinates one has

$$
\Psi\left(\left[e_{0}\right]_{2} \wedge\left[e_{1}\right]_{2} \wedge\left[e_{2}\right]_{2}\right)=-\epsilon_{0} \wedge \epsilon_{1}=\epsilon_{2} \wedge \epsilon_{1}
$$

The non-degenerate pairing

$$
\Lambda^{3} S^{2} V \otimes \Lambda^{3} S^{2} V \rightarrow \Lambda^{6} S^{2} V=\left(\Lambda^{3} V\right)^{\otimes 4}
$$

induces an isomorphism

$$
H: \Lambda^{3} S^{2} V \rightarrow\left(\Lambda^{3} S^{2} V\right)^{\#} \otimes \Lambda^{6} S^{2} V=\Lambda^{3} S_{2}\left(V^{\#}\right) \otimes\left(\Lambda^{3} V\right)^{\otimes 4}
$$

In coordinates one finds (with appropriate sign in the identification $\Lambda^{6} S^{2} V=R$)

$$
H\left(e_{0} e_{1} \wedge e_{1} e_{2} \wedge e_{2} e_{0}\right)=\left[f_{0}\right]_{2} \wedge\left[f_{1}\right]_{2} \wedge\left[f_{2}\right]_{2}
$$

3.3. The morphism Φ. We denote by $\Psi^{V^{\#}}$ the morphism Ψ with V replaced by $V^{\#}$ and define

$$
\Phi=\Psi^{V^{\#}} \circ H
$$

as the composite of

$$
\Lambda^{3} S^{2} V \xrightarrow{H} \Lambda^{3} S_{2}\left(V^{\#}\right) \otimes\left(\Lambda^{3} V\right)^{\otimes 4} \xrightarrow{\Psi^{V^{\#}}} \Lambda^{2} \operatorname{pgl}(V) \otimes\left(\Lambda^{3} V\right)^{\otimes 2}
$$

In coordinates, Φ is the morphism

$$
\Lambda^{3} S^{2} V \rightarrow \Lambda^{2} \operatorname{gl}(V)
$$

with

$$
e_{0} e_{1} \wedge e_{1} e_{2} \wedge e_{2} e_{0} \mapsto \epsilon_{2} \wedge \epsilon_{1}
$$

Remark. The element $\epsilon_{2} \wedge \epsilon_{1}$ is a generator of $\Lambda^{2} \mathcal{C}$, where $\mathcal{C} \subset \operatorname{pgl}(V)$ is the Cartan subalgebra corresponding to the basis. It follows that the image of Φ is in the kernel of the (lifted) Lie bracket

$$
[,]: \Lambda^{2} \operatorname{pgl}(V) \rightarrow \operatorname{sl}(V)
$$

More precisely, there is the short exact sequence

$$
0 \rightarrow \Lambda^{3} S^{2} V \otimes\left(\Lambda^{3} V^{\#}\right)^{\otimes 2} \xrightarrow{\Phi} \Lambda^{2} \operatorname{pgl}(V) \xrightarrow{[,]} \operatorname{sl}(V) \rightarrow 0
$$

Indeed, the formulas in Section 6 (or an inspection of the 8×8-matrix in Section 7) show that the image of Φ is a subbundle (the dual of Φ is an epimorphism) and the claim follows from rank reasons.

4. Identifying the resultant

We assume rank $V=3$. Let us recall a characterization of the resultant, for the special case of three forms $g_{i} \in S^{2} V(i=0,1,2)$.

As definition of the resultant we take [2, Définition 3, pp. 348]. The following claim follows then from [2, Corollaire, pp. 346] and degree reasons.

Lemma. Assume $R=\mathbf{Z}$. Let $F\left(g_{0}, g_{1}, g_{2}\right)$ be a homogeneous polynomial in the g_{i} of degree 12. If $F\left(g_{0}, g_{1}, g_{2}\right)=0$ whenever the g_{i} have a common non-trivial zero (over say algebraically closed fields), then $F\left(g_{0}, g_{1}, g_{2}\right)$ is a scalar multiple of the resultant $\operatorname{Res}\left(g_{0}, g_{1}, g_{2}\right)$.

Remark. To give a point (=section) in the projective space

$$
\mathbf{P}(V)=\operatorname{Proj} S^{\bullet} V
$$

means to give a codimension 1 subbundle W of V. Then $L=V / W$ is a line bundle. This way a point in $\mathbf{P}(V)$ is given by a short exact sequence

$$
0 \rightarrow W \rightarrow V \stackrel{\lambda}{\rightarrow} L \rightarrow 0
$$

with $\operatorname{rank} L=1$.
Let $g_{i} \in S^{2} V(i=0,1,2)$ and assume that there is a common zero in $\mathbf{P}(V)$. This means that there is a line bundle L and an epimorphism

$$
\lambda: V \rightarrow L
$$

such that

$$
S^{2} \lambda\left(g_{i}\right)=0 \quad(i=0,1,2)
$$

$\left(S^{2} \lambda(g) \in L^{\otimes 2}\right.$ is the evaluation of g at the point λ.)

Let

$$
W=\operatorname{ker} \lambda
$$

The morphism λ induces a morphism $\tilde{\lambda}$ on $\operatorname{pgl}(V)$, namely

$$
\begin{gathered}
\tilde{\lambda}: \frac{V \otimes V^{\#}}{R \cdot \mathrm{id}_{V}} \rightarrow L \otimes \frac{V^{\#}}{L^{\#}}=L \otimes W^{\#} \\
{[v \otimes \alpha] \mapsto \lambda(v) \otimes(\alpha \mid W)}
\end{gathered}
$$

$\tilde{\lambda}$ is an epimorphism and $\operatorname{ker} \tilde{\lambda}$ has rank 6 .

Lemma.

$$
\Phi\left(\Lambda^{3}\left(\operatorname{ker} S^{2} \lambda\right)\right) \subset \Lambda^{2}(\operatorname{ker} \tilde{\lambda}) \otimes\left(\Lambda^{3} V\right)^{\otimes 2}
$$

Proof. I checked by inspection of the formulas in Section 6: One takes a basis with $f_{0}=\lambda$. Using that $\theta_{1 i}, \theta_{2 i}$ leave f_{0} invariant, one finds that it suffices to check that

$$
\Phi(A)=\epsilon_{2} \wedge \epsilon_{1} \in \Lambda^{2}\left(\operatorname{ker} \tilde{f}_{0}\right)
$$

which is obvious.
Certainly there is an intrinsic proof without explicit computations.
Since $\Lambda^{8}(\operatorname{ker} \tilde{\lambda})=0$, the Pfaffian vanishes on $g_{0} \wedge g_{1} \wedge g_{2}$ if $g_{i} \in \operatorname{ker} S^{2} \lambda$ for $i=0$, 1, 2.

Hence for arbitrary g_{i} one has

$$
\operatorname{Pf}\left(\Phi\left(g_{0} \wedge g_{1} \wedge g_{2}\right)\right)=a \operatorname{Res}\left(g_{0}, g_{1}, g_{2}\right)
$$

for some $a \in \mathbf{Z}$ (assuming $R=\mathbf{Z}$). The computation at the very end of Section 6 shows

$$
\operatorname{Pf}\left(\Phi\left(e_{0}^{2} \wedge e_{1}^{2} \wedge e_{2}^{2}\right)\right)= \pm 1
$$

and therefore $a= \pm 1$. (The sign is not important. It depends on some choices anyway.)

5. Alternative definition of Φ

The material of this section is not really needed elsewhere, but hopefully illustrative.
5.1. The isomorphism $\Lambda^{3} S_{2} V \rightarrow \Lambda^{3} S^{2} V$ (rank $V=3$). Let

$$
\begin{aligned}
\eta: \Lambda^{3} S_{2} V & \rightarrow \Lambda^{3} S^{2} V \\
{[x]_{2} \wedge[y]_{2} \wedge[z]_{2} } & \mapsto x y \wedge y z \wedge z x
\end{aligned}
$$

Remark. For rank $V=3$, an explicit computation of η is provided below. For instance one has

$$
\eta\left(e_{0} * e_{1} \wedge e_{1} * e_{2} \wedge e_{2} * e_{0}\right)=e_{0}^{2} \wedge e_{1}^{2} \wedge e_{2}^{2}-2 e_{0} e_{1} \wedge e_{1} e_{2} \wedge e_{2} e_{0}
$$

Lemma. If $\operatorname{rank} V=3$, then η is an isomorphism.
Proof. This is evident from the explicit computations below. However there is a more conceptual proof. Namely, the inverse of η is the dual of η in the appropriate sense. More precisely, one has

$$
(H \circ \eta)\left(\left[e_{0}\right]_{2} \wedge\left[e_{1}\right]_{2} \wedge\left[e_{2}\right]_{2}\right)=\left[f_{0}\right]_{2} \wedge\left[f_{1}\right]_{2} \wedge\left[f_{2}\right]_{2}
$$

with H as in Section 3.2. It follows that $H \circ \eta$ is an epimorphism (for any V the elements $[x]_{2} \wedge[y]_{2} \wedge[z]_{2}$ generate $\Lambda^{3} S_{2} V$). But then $H \circ \eta$ must be an isomorphism since both modules are locally free of the same rank.

One may now define Φ as

$$
\Phi=\Psi \circ \eta^{-1}: \Lambda^{3} S^{2} V \rightarrow \Lambda^{2} U
$$

Remark. The morphism η is defined for any V of arbitrary rank r. It is another example of a morphism of strict polynomial functors. If $r \leq 2$, it is easy to see that η is an isomorphism. In general, coker η is annihilated by 8 (hint: the elements $x^{2} \wedge y^{2} \wedge z^{2}$ are in the image of η). In characteristic 2 there is an epimorphism coker $\eta \rightarrow \Lambda^{4} V \otimes S^{2} V$.
5.2. Some explicit computations. The following tables describe some actions of elements of $\operatorname{sl}(V)$ and yield generators of the $\mathrm{sl}(V)$-modules $\Lambda^{3} S_{2} V$ resp. $\Lambda^{3} S^{2} V$. The dim-slot shows the rank of the subspace generated by all permutations of indices.

Table 1.

$$
\begin{align*}
A & =\left[e_{0}\right]_{2} \wedge\left[e_{1}\right]_{2} \wedge\left[e_{2}\right]_{2} \tag{dim}\\
B=\theta_{12}(A) & =\left[e_{0}\right]_{2} \wedge\left[e_{1}\right]_{2} \wedge e_{1} * e_{2} \tag{dim}\\
\theta_{02}(B) & =\left[e_{0}\right]_{2} \wedge\left[e_{1}\right]_{2} \wedge e_{1} * e_{0} \tag{dim}\\
\theta_{10}(B) & =e_{0} * e_{1} \wedge\left[e_{1}\right]_{2} \wedge e_{1} * e_{2} \tag{dim}\\
C=\theta_{20}(B) & =e_{2} * e_{0} \wedge\left[e_{1}\right]_{2} \wedge e_{1} * e_{2} \tag{dim}\\
D=\theta_{01}(C) & =e_{2} * e_{0} \wedge e_{0} * e_{1} \wedge e_{1} * e_{2} \tag{dim}
\end{align*}
$$

Table 2.

$$
\begin{align*}
A & =e_{0} e_{1} \wedge e_{1} e_{2} \wedge e_{2} e_{0} \tag{dim}\\
B=\theta_{12}(A) & =e_{0} e_{1} \wedge e_{1}^{2} \wedge e_{2} e_{0} \tag{dim}\\
\theta_{02}(B) & =e_{0} e_{1} \wedge e_{1}^{2} \wedge e_{0}^{2} \tag{dim}\\
\theta_{10}(B) & =e_{0} e_{1} \wedge e_{1}^{2} \wedge e_{1} e_{2} \tag{dim}\\
C=\theta_{20}(B) & =e_{0} e_{1} \wedge e_{1}^{2} \wedge e_{2}^{2}+e_{1} e_{2} \wedge e_{1}^{2} \wedge e_{2} e_{0} \\
& =e_{0} e_{1} \wedge e_{1}^{2} \wedge e_{2}^{2}+\left.B\right|_{e_{0} \leftrightarrow e_{2}} \tag{dim}\\
D=\theta_{01}(C) & =e_{0}^{2} \wedge e_{1}^{2} \wedge e_{2}^{2}+2 e_{1} e_{2} \wedge e_{0} e_{1} \wedge e_{2} e_{0} \\
& =e_{0}^{2} \wedge e_{1}^{2} \wedge e_{2}^{2}-2 A \tag{dim}
\end{align*}
$$

Corollary. $\Lambda^{3} S_{2} V$ resp. $\Lambda^{3} S^{2} V$ are as $\operatorname{sl}(V)$-modules generated by

$$
\left[e_{0}\right]_{2} \wedge\left[e_{1}\right]_{2} \wedge\left[e_{2}\right]_{2}, \quad e_{0} e_{1} \wedge e_{1} e_{2} \wedge e_{2} e_{0}
$$

Remark. Clearly the tables describe the isomorphism η in terms of basis elements.
5.3. Decomposition of $\Lambda^{3} S^{2} V$. We conclude with some exercises (rank $V=3$).

Lemma. There is a short exact sequence of PGL(V)-modules

$$
0 \rightarrow S_{3} V \otimes \Lambda^{3} V^{\#} \rightarrow \Lambda^{3} S^{2} V \otimes\left(\Lambda^{3} V^{\#}\right)^{\otimes 2} \rightarrow S^{3}\left(V^{\#}\right) \otimes \Lambda^{3} V \rightarrow 0
$$

This is a "must know" on $\Lambda^{3} S^{2} V(\operatorname{rank} V=3)$, albeit not needed in this text. It is the integral version of the classical decomposition $\Lambda^{3} S^{2} V=S^{3} V \oplus S^{3}\left(V^{\#}\right)$ of $\mathrm{SL}(3)$-modules over \mathbf{Q} and related with classical constructions for plane cubics, like the Hessian curve and the invariants c_{4}, c_{6} of elliptic curves [6, pp. 188].

The joy of proof is left to the reader. The same goes for
Lemma. Let

$$
\begin{aligned}
J: \Lambda^{3} S_{2} V & \rightarrow \Lambda^{3} S^{2} V \\
{[x]_{2} \wedge[y]_{2} \wedge[z]_{2} } & \mapsto x^{2} \wedge y^{2} \wedge z^{2}
\end{aligned}
$$

and put

$$
T=J \circ \eta^{-1} \in \operatorname{End}_{G L(V)}\left(S^{2} V\right)
$$

Then

$$
(T-4)(T+2)=0
$$

6. Computation of Φ

The purpose of the following explicit computations is to verify:
Lemma. With respect to the basis

$$
\theta_{20},-\theta_{21}, \theta_{10}, \theta_{12},-\theta_{01}, \theta_{02},-\epsilon_{1}, \epsilon_{2}
$$

of $\operatorname{pgl}(V)$, the morphism Φ is given by the matrix in Section 7 (which equals that of [3, Introduction]).

To compute Φ on all basis elements, we apply appropriate elements of the Lie algebra $\operatorname{sl}(V)$. Actually we consider the actions of the universal enveloping algebra. For instance we understand

$$
\theta_{21} \theta_{01}(Y)=\theta_{21}\left(\theta_{01}(Y)\right)
$$

The action of $\operatorname{sl}(V)$ on $S^{2} V$ is given by

$$
\theta_{i j}\left(e_{h} e_{k}\right)=\delta_{j h} e_{i} e_{k}+\delta_{j k} e_{h} e_{i}
$$

and the action of $\operatorname{sl}(V)$ on $\operatorname{pgl}(V)$ is given by commutators.
The brackets $[i j k]$ stand for the Plücker basis with respect to the ordered basis

$$
\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 & 5 \\
e_{0}^{2} & e_{0} e_{1} & e_{2} e_{0} & e_{1}^{2} & e_{1} e_{2} & e_{2}^{2}
\end{array}
$$

Here are the computations:

1 element with weights $2,2,2$ of type $x y \wedge x z \wedge y z$

$$
\begin{aligned}
-[124] & =A
\end{aligned}=e_{0} e_{1} \wedge e_{1} e_{2} \wedge e_{2} e_{0}, ~ م X=\epsilon_{2} \wedge \epsilon_{1}=\epsilon_{1} \wedge \epsilon_{0}
$$

6 elements with weights $3,2,1$ of type $x^{2} \wedge x y \wedge y z$

$$
\begin{aligned}
& -[024]=\theta_{01}(A)=e_{0}^{2} \wedge e_{1} e_{2} \wedge e_{2} e_{0} \\
& \mapsto \theta_{01}(X)=-\theta_{01} \wedge \epsilon_{2} \\
& {[234]=\theta_{10}(A)=e_{1}^{2} \wedge e_{1} e_{2} \wedge e_{2} e_{0}} \\
& \mapsto \theta_{10}(X)=\theta_{10} \wedge \epsilon_{2} \\
& -[123]=\theta_{12}(A)=e_{0} e_{1} \wedge e_{1}^{2} \wedge e_{2} e_{0} \\
& \mapsto \theta_{12}(X)=-\theta_{12} \wedge \epsilon_{0} \\
& -[125]=\theta_{21}(A)=e_{0} e_{1} \wedge e_{2}^{2} \wedge e_{2} e_{0} \\
& \mapsto \theta_{21}(X)=\theta_{21} \wedge \epsilon_{0} \\
& {[145]=\theta_{20}(A)=e_{0} e_{1} \wedge e_{1} e_{2} \wedge e_{2}^{2}} \\
& \mapsto \theta_{20}(X)=-\theta_{20} \wedge \epsilon_{1} \\
& {[014]=\theta_{02}(A)=e_{0} e_{1} \wedge e_{1} e_{2} \wedge e_{0}^{2}} \\
& \mapsto \theta_{02}(X)=\theta_{02} \wedge \epsilon_{1}
\end{aligned}
$$

3 elements with weights $3,3,0$ of type $x^{2} \wedge x y \wedge y^{2}$

$$
\begin{aligned}
& -[025]=\theta_{21} \theta_{01}(A)=e_{0}^{2} \wedge e_{2}^{2} \wedge e_{2} e_{0} \\
& \mapsto \theta_{21} \theta_{01}(X)=\theta_{01} \wedge \theta_{21} \\
& {[013]=\theta_{02} \theta_{12}(A)=e_{0} e_{1} \wedge e_{1}^{2} \wedge e_{0}^{2}} \\
& \mapsto \theta_{02} \theta_{12}(X)=\theta_{12} \wedge \theta_{02} \\
& {[345]=\theta_{10} \theta_{20}(A)=e_{1}^{2} \wedge e_{1} e_{2} \wedge e_{2}^{2}} \\
& \mapsto \theta_{10} \theta_{20}(X)=\theta_{20} \wedge \theta_{10}
\end{aligned}
$$

3 elements with weights $4,1,1$ of type $x^{2} \wedge x y \wedge x z$

$$
\left.\begin{array}{rl}
{[012]} & =\theta_{02} \theta_{01}(A)
\end{array}=e_{0}^{2} \wedge e_{1} e_{0} \wedge e_{2} e_{0}\right)
$$

6 elements with weights $3,2,1$ of type $x^{2} \wedge x y \wedge z^{2}$

$$
\begin{aligned}
{[045]=\theta_{20} \theta_{01}(A) } & =e_{0}^{2} \wedge e_{1} e_{2} \wedge e_{2}^{2} \\
\mapsto \theta_{20} \theta_{01}(X) & =-\theta_{20} \wedge \theta_{01}-\theta_{21} \wedge \epsilon_{2} \\
{[235]=\theta_{21} \theta_{10}(A) } & =e_{1}^{2} \wedge e_{2}^{2} \wedge e_{2} e_{0} \\
\mapsto \theta_{21} \theta_{10}(X) & =\theta_{21} \wedge \theta_{10}+\theta_{20} \wedge \epsilon_{2} \\
{[023]=\theta_{01} \theta_{12}(A) } & =e_{0}^{2} \wedge e_{1}^{2} \wedge e_{2} e_{0} \\
\mapsto \theta_{01} \theta_{12}(X) & =-\theta_{01} \wedge \theta_{12}-\theta_{02} \wedge \epsilon_{0} \\
{[015]=\theta_{02} \theta_{21}(A) } & =e_{0} e_{1} \wedge e_{2}^{2} \wedge e_{0}^{2} \\
\mapsto \theta_{02} \theta_{21}(X) & =\theta_{02} \wedge \theta_{21}+\theta_{01} \wedge \epsilon_{0} \\
{[135]=\theta_{12} \theta_{20}(A) } & =e_{0} e_{1} \wedge e_{1}^{2} \wedge e_{2}^{2} \\
\mapsto \theta_{12} \theta_{20}(X) & =-\theta_{12} \wedge \theta_{20}-\theta_{10} \wedge \epsilon_{1} \\
{[034]=\theta_{10} \theta_{02}(A) } & =e_{1}^{2} \wedge e_{1} e_{2} \wedge e_{0}^{2} \\
\mapsto \theta_{10} \theta_{02}(X) & =\theta_{10} \wedge \theta_{02}+\theta_{12} \wedge \epsilon_{1}
\end{aligned}
$$

1 element with weights $2,2,2$ of type $x^{2} \wedge y^{2} \wedge z^{2}$

$$
\begin{aligned}
{[035]=} & \theta_{12} \theta_{20} \theta_{01}(A)= \\
\mapsto & e_{0}^{2} \wedge e_{1}^{2} \wedge e_{2}^{2} \\
\mapsto \theta_{12} \theta_{20} \theta_{01}(X)= & \theta_{01} \wedge \theta_{10}+\theta_{20} \wedge \theta_{02}+\theta_{12} \wedge \theta_{21} \\
& +\epsilon_{2} \wedge \epsilon_{1}
\end{aligned}
$$

7. The alternating 8×8-matrix

	θ_{20}	$-\theta_{21}$	θ_{10}	θ_{12}	$-\theta_{01}$	θ_{02}	$-\epsilon_{1}$	ϵ_{2}
θ_{20}	0	$[245]$	$[345]$	$[135]$	$[045]$	$[035]$	$[145]$	$[235]$
$-\theta_{21}$	$-[245]$	0	$-[235]$	$[035]$	$[025]$	$[015]$	$[125]$	$-[125]+[045]$
θ_{10}	$-[345]$	$[235]$	0	$[134]$	$[035]$	$[034]$	$[135]$	$[234]$
θ_{12}	$-[135]$	$-[035]$	$-[134]$	0	$[023]$	$[013]$	$[123]-[034]$	$-[123]$
$-\theta_{01}$	$-[045]$	$-[025]$	$-[035]$	$-[023]$	0	$[012]$	$-[015]$	$-[024]+[015]$
θ_{02}	$-[035]$	$-[015]$	$-[034]$	$-[013]$	$-[012]$	0	$[023]-[014]$	$-[023]$
$-\epsilon_{1}$	$-[145]$	$-[125]$	$-[135]$	$-[123]+[034]$	$[015]$	$-[023]+[014]$	0	$-[124]+[035]$
ϵ_{2}	$-[235]$	$[125]-[045]$	$-[234]$	$[123]$	$[024]-[015]$	$[023]$	$[124]-[035]$	0

References

[1] A. Cayley, On the theory of elimination, Cambridge and Dublin Math. J. 3 (1848), 116-120.
[2] M. Demazure, Résultant, discriminant, Enseign. Math. (2) 58 (2012), no. 3-4, 333-373.
[3] D. Eisenbud, F. Schreyer, and J. Weyman, Resultants and Chow forms via exterior syzygies, J. Amer. Math. Soc. 16 (2003), no. 3, 537-579.
[4] E. Friedlander and A. Suslin, Cohomology of finite group schemes over a field, Invent. Math. 127 (1997), no. 2, 209-270.
[5] I. Gelfand, M. Kapranov, and A. Zelevinsky, Discriminants, resultants and multidimensional determinants, Modern Birkhäuser Classics, Birkhäuser Boston Inc., Boston, MA, 2008, Reprint of the 1994 edition.
[6] G. Salmon, A treatise on the higher plane curves: intended as a sequel to "A treatise of conic sections". Third edition., 1879.
[7] A. Suslin, E. Friedlander, and C. Bendel, Infinitesimal 1-parameter subgroups and cohomology, J. Amer. Math. Soc. 10 (1997), no. 3, 693-728.
[8] J. Sylvester, On the principles of the calculus of forms, The Collected Mathematical Papers. Volume I: (1837-1853), 1853, pp. 284-327.
[9] The Stacks Project Authors, Stacks project, 〈http://stacks.math.columbia.edu \rangle.
Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany

E-mail address: rost at math.uni-bielefeld.de
URL: www.math.uni-bielefeld.de/~rost

[^0]: Date: December 4, 2018.

