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1. Introduction and Overview

We consider the Schur functors, see [1].
Let V be a locally free R-module of finite rank. The exterior power algebra is

denoted as

ΛV =
⊕

k≥0

ΛkV

In the following V is fixed and we drop it from the notations.
The simplest non-trivial example of a Schur functor is

T a,b =
(

Λa
⊗ Λb

)

/Q

whereQ is generated by the “quadratic relations”. In the notation of [1, Section 8.1]
one has T a,b = Eλ where λ is the conjugate partition of (a, b) (the Young diagram
has two columns of sizes a, b).

Let us describe Q. We assume a ≥ b. For 0 ≤ r ≤ b let

Ar : Λ
a ⊗ Λr ⊗ Λb−r → Λa ⊗ Λb

where

Ar = [Φ]a,r,b−r
a,b

is the graded component (by means of inclusion and projection) of

Φ = (µ⊗ µ)(1⊗ σ ⊗ 1)(∆⊗ 1⊗ 1): Λ⊗ Λ⊗ Λ → Λ⊗ Λ

Here µ is the multiplication and ∆ is the comultiplication in the exterior algebra.
Moreover σ is the unsigned switch involution:

σ(x⊗ y) = y ⊗ x
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Thus

Ar(x⊗ y ⊗ z) =
∑

i

xiy ⊗ x′
iz

(

∑

i

xi ⊗ x′
i = [∆(x)]a−r,r

)

Note that

A0(x⊗ y ⊗ z) = x⊗ yz

By definition Q is generated by the “exchange relations”. This means

Q =

b
∑

r=1

im(Qr)

where

Qr : Λ
a ⊗ Λr ⊗ Λb−r → Λa ⊗ Λb

Qr(x⊗ y ⊗ z) = Ar(x⊗ y ⊗ z)− x⊗ yz

with 0 ≤ r ≤ b (one has Q0 = 0). In [1, Section 8.1] the module Q is described
more explicitly in terms of boxes and tensors ∧ivi.

This seems to be the standard definition of T a,b.
For many considerations it has some advantages, but there is a disadvantage.

Namely if rankV ≤ a, then Q = 0. (If rankV < a, then obviously T a,b = 0.)
However that is obvious only at the second glance. So why not having a description
of Q which makes this obvious?

(This kind of question was also the starting point for my text “On the adjunct
of an endomorphism” on the adjunct and the Cayley-Hamilton theorem.)

Indeed, one has

Proposition 1. For 0 ≤ r ≤ b let

Rr : Λ
a+r

⊗ Λb−r
→ Λa

⊗ Λb

Rr = [(1 ⊗ µ)(∆⊗ 1)]a+r,b−r
a,b

and put

R =

b
∑

r=1

im(Rr)

Then Q = R.

There is a variant:

Proposition 2. For 0 ≤ r ≤ b let

R′
r : Λ

b−r ⊗ Λa+r → Λa ⊗ Λb

R′
r = [(µ⊗ 1)(1⊗∆)]b−r,a+r

a,b

and put

R′ =
b

∑

r=1

im(R′
r)

Then Q = R′.

Proofs are given in the text.
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My feeling is that the exchange relations are the most basic or elementary rela-
tions (I always use them to check some ideas), but the Rr are more convenient for
some generalities.

An interesting example is branching: write V = V1 ⊕ L for a line bundle L
and see what you get. One doesn’t get here always the Schur modules of V1, but
extensions of them.

Another interesting topic is the description of Schur modules as submodules
rather than quotient modules (see [1, Section 8.1, p. 109]). One may describe this
as follows: Since T a,b is a strict polynomial functor, there is a pairing

Sa+b

(

Hom(V, U)
)

⊗ T a,b(V ) → T a,b(U)

which yields a morphism

T a,b(V ) → Sa+b
(

V ⊗ U#
)

⊗ T a,b(U)

where # denotes the dual.
Suppose rankU = a. Then

T a,b(U) = ΛaU ⊗ ΛbU

and we get a morphism

T a,b(V ) → Sa+b
(

V ⊗ U#
)

⊗ ΛaU ⊗ ΛbU

Now choose a basis fi of U
# and apply

(f1 ∧ · · · ∧ fa)⊗ (f1 ∧ · · · ∧ fb)

to the terms on the right. This results in a morphism

T a,b(V ) → Sa+b
(

V ⊗ U#
)

That’s essentially the embedding in [1, Section 8.1, Corollary of proof, p. 111].

Everything generalizes without much problem to any Schur functor

T a1,...,ah =
(

Λa1 ⊗ · · · ⊗ Λah
)

/Q (a1 ≥ · · · ≥ ah)

This is clear since the module Q is generated by the quadratic relations for the
T ai,aj . If I am not mistaken, one may restrict here to the quadratic relations for
successive terms, that is for the T ai,ai+1 . And that follows perhaps from a defining
relation for SL(3,Z), see the end of my text “Notes on strict bicommutative Hopf
algebras”.

A further interesting related topic is to determine all strict polynomial functors
of the form

Λa1 ⊗ · · · ⊗ Λar → Λb1 ⊗ · · · ⊗ Λbs
(

∑

i

ai =
∑

j

bj
)

(I think that is not too difficult, at least for r, s ≤ 2). Moreover one may ask for
instance whether all morphisms of strict polynomial functors of the form

Λc
⊗X → Λa

⊗ Λb

are given by a morphism

X →
⊕

c+e+f=a+b

Λe ⊗ Λf
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followed by the corresponding component of

(µ⊗ µ)(1⊗ σ ⊗ 1)(∆⊗ 1⊗ 1): Λ ⊗ Λ⊗ Λ → Λ ⊗ Λ

By the way, I came to learn Schur functors and Young diagrams in detail because
I wanted to understand the Pluecker relations for the embedding

Gr(r, V ) → P(ΛrV )

for r = 3. I had never realized how complicated this is already in the case r = 2.
See [1, Section 8.4], in particular [1, Proposition 2, p. 126].
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2. On the Hopf algebra structure

2.1. The action of integral matrices. Let V be a locally free R-module of finite
rank. The exterior power algebra is denoted as usual by

Λ•V =
⊕

k≥0

ΛkV

There is a natural isomorphism

Jn : (Λ
•V )⊗n → Λ•(V n)

given by the product. To describe Jn precisely, let ei = (0, . . . , 0, 1, 0, . . . , 0) be the
standard basis of Rn and let

ji : Λ
•V → Λ•(V ⊗Rn)

ji = Λ•(v 7→ v ⊗ ei)

be the morphism induced from the inclusion of the i-th summand. Then Jn is given
by

Jn : (Λ
•V )⊗n → Λ•(V ⊗Rn)

Jn(x1 ⊗ · · · ⊗ xn) = j1(x1) · · · jn(xn)

There is the natural functor associating to a R-module A the exterior power
algebra Λ•(V ⊗A) of V ⊗A. We will consider the restriction of this functor to the
free R-modules Rn = R⊗Z Zn and to the morphisms Rn → Rm given by integral
matrices.

We use the abbreviations

H = Λ•V, Hk = ΛkV

Let Z be the category with objects Zn (n ≥ 0) and with morphisms

HomZ(Z
m,Zn) = HomZ(Z

m,Zn) = M(n,m)

the Z-linear homomorphisms (or integral n×m-matrices).
We consider the functor

F : Z → R-algebras

F (Zn) = Λ•(V ⊗Z Zn) = (Λ•V )⊗n = H⊗n

Here we used the isomorphisms Jn for the identifications.
This way we get an action of integral matrices on the tensor powers of H (by

acting on the Zn). We denote this action by

M(n,m)×H⊗m → H⊗n

(A, x) 7→ [A](x)

The basic morphisms S, µ,∆ (the antipode, the product and the coproduct of H
as a graded bicommutative Hopf algebra) have the descriptions

S = [−1], µ = [1, 1], ∆ =

[

1
1

]

Using the matrix notation the sometimes tiring computations in terms of S, µ,∆
can be written in a more compact form.
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For example, the operation
[

1 1
0 1

]

: H⊗2
→ H⊗2

is in concrete terms the morphism

(µ⊗ 1) ◦ (1⊗∆): (Λ•V )⊗2 → (Λ•V )⊗2

x⊗ y 7→
∑

i

xyi ⊗ y′i
(

∑

i

yi ⊗ y′i = ∆(y)
)

See my text “Notes on strict bicommutative Hopf algebras” for more examples.

2.2. Rewriting the exchange relations. The antipode S acts on Hr by multi-
plication with (−1)r. The involution τ acts like this:

τ : Hr ⊗Hs → Hs ⊗Hr

τ(x⊗ y) = (−1)rsy ⊗ x

For r = s this gives

σ = τ(S ⊗ 1) = τ(1 ⊗ S) : Hr ⊗Hr → Hr ⊗Hr

where σ is the unsigned switch.
It follows that in the definition of Ar we may use

Φ1 = (µ⊗ µ)
(

1⊗ τ(1 ⊗ S)⊗ 1
)

(∆⊗ 1⊗ 1): H⊗3
→ H⊗2

instead of Φ. The advantage is that Φ1 is expressible in terms of the Hopf algebra
structure (which doesn’t contain the unsigned switch). In terms of a matrix action:

Φ1 =

[

1 −1 0
1 0 1

]

By the way, we could use

Φ2 =

[

1 1 0
−1 0 1

]

= (µ⊗ µ)
(

1⊗ τ(S ⊗ 1)⊗ 1
)

(∆⊗ 1⊗ 1)

as well: The graded components [ ]a,r,b−r
a,b of Φ, Φ1, Φ2 are all equal to Ar.

3. Proof of Proposition 1 (R ⊂ Q)

We show that the image of Rr (1 ≤ r ≤ b) is contained in Q.
We may assume r = b > 0 (the factor Λb−r in Qr and Rr gets just multiplied

from the right to Λb). One has

Rb : Λ
a+b → Λa ⊗ Λb

Rb = [∆]a+b
a,b

Since the multiplication

µ : Λa
⊗ Λb

→ Λa+b

is surjective, it suffices to show that the image of

[∆µ]a,ba,b : Λ
a
⊗ Λb

→ Λa
⊗ Λb

is contained in Q.
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One has (by the bialgebra axiom)

∆µ = (µ⊗ µ)(1 ⊗ τ ⊗ 1)(∆⊗∆)

= Φ1(1⊗ S ⊗ 1)(1⊗∆)

Taking the graded components [ ]a,ba,b this is modulo Q the same as

(1⊗ µ)(1⊗ S ⊗ 1)(1⊗∆) = 0

(The last expression is trivial by the Hopf algebra axiom for the antipode.)
�

4. Proof of Proposition 1 (Q ⊂ R)

We show that the image of Qr (1 ≤ r ≤ b) is contained in

R =

b
∑

r=1

im(Rr)

Again we may assume r = b > 0. One has

Ab : Λ
a
⊗ Λb

→ Λa
⊗ Λb

Ab = [Φ′
1]

a,b
a,b

with

Φ′
1 = (µ⊗ 1)(1⊗ τ)(∆ ⊗ S)

=

[

1 −1
1 0

]

=

[

1 0
1 1

] [

1 −1
0 1

]

The matrix

[

1 −1
0 1

]

restricted to Λa ⊗ Λb is a morphism

Λa ⊗ Λb →
⊕

r≥0

Λa+r ⊗ Λb−r

The matrix

[

1 0
1 1

]

is on Λa+r ⊗ Λb−r just Rr (after projection to Λa ⊗ Λb). So

modulo R there just remains the term for r = 0. But that’s the identity. Hence
Qb = Ab − id is trivial mod R. �

5. Proof of Proposition 2

We have to show

R = R′ :=

b
∑

r=1

im(R′
r)

We will use the matrix identity
[

1 1
0 1

]

=

[

1 0
1 1

] [

1 1
−1 0

]

Informally speaking, if a ≥ b the matrix on the left yields the R′
r and the second

matrix yields Rr. If a ≤ b it is the other way round.
To gain symmetry, we drop the condition a ≤ b and put

k = max(a, b)
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Let d = k + r with r > 0 and c = a + b − d. Taking the component [ ]c,da,b the
matrix identity yields a decomposition

Λc ⊗ Λd →
⊕

e+f=c, e≥0

Λe+d ⊗ Λf → Λa ⊗ Λb

If k = a, the composition is R′
r and the map on the right is the sum of the Re+r.

If k = b, the composition is Rr and the map on the right is the sum of the R′
e+r.
�
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