NOTES ON SCHUR FUNCTORS

MARKUS ROST

Contents

1. Introduction and Overview 1
2. On the Hopf algebra structure 5
2.1. The action of integral matrices 5
2.2. Rewriting the exchange relations 6
3. Proof of Proposition $1(R \subset Q) \quad 6$
4. Proof of Proposition $1(Q \subset R) \quad 7$
5. Proof of Proposition 2 7
References 8

1. Introduction and Overview

We consider the Schur functors, see [1].
Let V be a locally free R-module of finite rank. The exterior power algebra is denoted as

$$
\Lambda V=\bigoplus_{k \geq 0} \Lambda^{k} V
$$

In the following V is fixed and we drop it from the notations.
The simplest non-trivial example of a Schur functor is

$$
T^{a, b}=\left(\Lambda^{a} \otimes \Lambda^{b}\right) / Q
$$

where Q is generated by the "quadratic relations". In the notation of [1, Section 8.1] one has $T^{a, b}=E^{\lambda}$ where λ is the conjugate partition of (a, b) (the Young diagram has two columns of sizes a, b).

Let us describe Q. We assume $a \geq b$. For $0 \leq r \leq b$ let

$$
A_{r}: \Lambda^{a} \otimes \Lambda^{r} \otimes \Lambda^{b-r} \rightarrow \Lambda^{a} \otimes \Lambda^{b}
$$

where

$$
A_{r}=[\Phi]_{a, b}^{a, r, b-r}
$$

is the graded component (by means of inclusion and projection) of

$$
\Phi=(\mu \otimes \mu)(1 \otimes \sigma \otimes 1)(\Delta \otimes 1 \otimes 1): \Lambda \otimes \Lambda \otimes \Lambda \rightarrow \Lambda \otimes \Lambda
$$

Here μ is the multiplication and Δ is the comultiplication in the exterior algebra. Moreover σ is the unsigned switch involution:

$$
\sigma(x \otimes y)=y \otimes x
$$

Thus

$$
A_{r}(x \otimes y \otimes z)=\sum_{i} x_{i} y \otimes x_{i}^{\prime} z \quad\left(\sum_{i} x_{i} \otimes x_{i}^{\prime}=[\Delta(x)]_{a-r, r}\right)
$$

Note that

$$
A_{0}(x \otimes y \otimes z)=x \otimes y z
$$

By definition Q is generated by the "exchange relations". This means

$$
Q=\sum_{r=1}^{b} \operatorname{im}\left(Q_{r}\right)
$$

where

$$
\begin{gathered}
Q_{r}: \Lambda^{a} \otimes \Lambda^{r} \otimes \Lambda^{b-r} \rightarrow \Lambda^{a} \otimes \Lambda^{b} \\
Q_{r}(x \otimes y \otimes z)=A_{r}(x \otimes y \otimes z)-x \otimes y z
\end{gathered}
$$

with $0 \leq r \leq b$ (one has $Q_{0}=0$). In [1, Section 8.1] the module Q is described more explicitly in terms of boxes and tensors $\wedge_{i} v_{i}$.

This seems to be the standard definition of $T^{a, b}$.
For many considerations it has some advantages, but there is a disadvantage. Namely if $\operatorname{rank} V \leq a$, then $Q=0$. (If $\operatorname{rank} V<a$, then obviously $T^{a, b}=0$.) However that is obvious only at the second glance. So why not having a description of Q which makes this obvious?
(This kind of question was also the starting point for my text "On the adjunct of an endomorphism" on the adjunct and the Cayley-Hamilton theorem.)

Indeed, one has
Proposition 1. For $0 \leq r \leq b$ let

$$
\begin{aligned}
& R_{r}: \Lambda^{a+r} \otimes \Lambda^{b-r} \rightarrow \Lambda^{a} \otimes \Lambda^{b} \\
& R_{r}=[(1 \otimes \mu)(\Delta \otimes 1)]_{a, b}^{a+r, b-r}
\end{aligned}
$$

and put

$$
R=\sum_{r=1}^{b} \operatorname{im}\left(R_{r}\right)
$$

Then $Q=R$.
There is a variant:
Proposition 2. For $0 \leq r \leq b$ let

$$
\begin{aligned}
& R_{r}^{\prime}: \Lambda^{b-r} \otimes \Lambda^{a+r} \rightarrow \Lambda^{a} \otimes \Lambda^{b} \\
& R_{r}^{\prime}=[(\mu \otimes 1)(1 \otimes \Delta)]_{a, b}^{b-r, a+r}
\end{aligned}
$$

and put

$$
R^{\prime}=\sum_{r=1}^{b} \operatorname{im}\left(R_{r}^{\prime}\right)
$$

Then $Q=R^{\prime}$.
Proofs are given in the text.

My feeling is that the exchange relations are the most basic or elementary relations (I always use them to check some ideas), but the R_{r} are more convenient for some generalities.

An interesting example is branching: write $V=V_{1} \oplus L$ for a line bundle L and see what you get. One doesn't get here always the Schur modules of V_{1}, but extensions of them.

Another interesting topic is the description of Schur modules as submodules rather than quotient modules (see [1, Section 8.1, p. 109]). One may describe this as follows: Since $T^{a, b}$ is a strict polynomial functor, there is a pairing

$$
S_{a+b}(\operatorname{Hom}(V, U)) \otimes T^{a, b}(V) \rightarrow T^{a, b}(U)
$$

which yields a morphism

$$
T^{a, b}(V) \rightarrow S^{a+b}\left(V \otimes U^{\#}\right) \otimes T^{a, b}(U)
$$

where \# denotes the dual.
Suppose $\operatorname{rank} U=a$. Then

$$
T^{a, b}(U)=\Lambda^{a} U \otimes \Lambda^{b} U
$$

and we get a morphism

$$
T^{a, b}(V) \rightarrow S^{a+b}\left(V \otimes U^{\#}\right) \otimes \Lambda^{a} U \otimes \Lambda^{b} U
$$

Now choose a basis f_{i} of $U^{\#}$ and apply

$$
\left(f_{1} \wedge \cdots \wedge f_{a}\right) \otimes\left(f_{1} \wedge \cdots \wedge f_{b}\right)
$$

to the terms on the right. This results in a morphism

$$
T^{a, b}(V) \rightarrow S^{a+b}\left(V \otimes U^{\#}\right)
$$

That's essentially the embedding in [1, Section 8.1, Corollary of proof, p. 111].
Everything generalizes without much problem to any Schur functor

$$
T^{a_{1}, \ldots, a_{h}}=\left(\Lambda^{a_{1}} \otimes \cdots \otimes \Lambda^{a_{h}}\right) / Q \quad\left(a_{1} \geq \cdots \geq a_{h}\right)
$$

This is clear since the module Q is generated by the quadratic relations for the $T^{a_{i}, a_{j}}$. If I am not mistaken, one may restrict here to the quadratic relations for successive terms, that is for the $T^{a_{i}, a_{i+1}}$. And that follows perhaps from a defining relation for $\operatorname{SL}(3, \mathbf{Z})$, see the end of my text "Notes on strict bicommutative Hopf algebras".

A further interesting related topic is to determine all strict polynomial functors of the form

$$
\Lambda^{a_{1}} \otimes \cdots \otimes \Lambda^{a_{r}} \rightarrow \Lambda^{b_{1}} \otimes \cdots \otimes \Lambda^{b_{s}} \quad\left(\sum_{i} a_{i}=\sum_{j} b_{j}\right)
$$

(I think that is not too difficult, at least for $r, s \leq 2$). Moreover one may ask for instance whether all morphisms of strict polynomial functors of the form

$$
\Lambda^{c} \otimes X \rightarrow \Lambda^{a} \otimes \Lambda^{b}
$$

are given by a morphism

$$
X \rightarrow \bigoplus_{c+e+f=a+b} \Lambda^{e} \otimes \Lambda^{f}
$$

followed by the corresponding component of

$$
(\mu \otimes \mu)(1 \otimes \sigma \otimes 1)(\Delta \otimes 1 \otimes 1): \Lambda \otimes \Lambda \otimes \Lambda \rightarrow \Lambda \otimes \Lambda
$$

By the way, I came to learn Schur functors and Young diagrams in detail because I wanted to understand the Pluecker relations for the embedding

$$
\operatorname{Gr}(r, V) \rightarrow \mathbf{P}\left(\Lambda^{r} V\right)
$$

for $r=3$. I had never realized how complicated this is already in the case $r=2$.
See [1, Section 8.4], in particular [1, Proposition 2, p. 126].

2. On the Hopf algebra structure

2.1. The action of integral matrices. Let V be a locally free R-module of finite rank. The exterior power algebra is denoted as usual by

$$
\Lambda^{\bullet} V=\bigoplus_{k \geq 0} \Lambda^{k} V
$$

There is a natural isomorphism

$$
J_{n}:\left(\Lambda^{\bullet} V\right)^{\otimes n} \rightarrow \Lambda^{\bullet}\left(V^{n}\right)
$$

given by the product. To describe J_{n} precisely, let $e_{i}=(0, \ldots, 0,1,0, \ldots, 0)$ be the standard basis of R^{n} and let

$$
\begin{gathered}
j_{i}: \Lambda^{\bullet} V \rightarrow \Lambda^{\bullet}\left(V \otimes R^{n}\right) \\
j_{i}=\Lambda^{\bullet}\left(v \mapsto v \otimes e_{i}\right)
\end{gathered}
$$

be the morphism induced from the inclusion of the i-th summand. Then J_{n} is given by

$$
\begin{aligned}
J_{n}:\left(\Lambda^{\bullet} V\right)^{\otimes n} & \rightarrow \Lambda^{\bullet}\left(V \otimes R^{n}\right) \\
J_{n}\left(x_{1} \otimes \cdots \otimes x_{n}\right) & =j_{1}\left(x_{1}\right) \cdots j_{n}\left(x_{n}\right)
\end{aligned}
$$

There is the natural functor associating to a R-module A the exterior power algebra $\Lambda^{\bullet}(V \otimes A)$ of $V \otimes A$. We will consider the restriction of this functor to the free R-modules $R^{n}=R \otimes \mathbf{z} \mathbf{Z}^{n}$ and to the morphisms $R^{n} \rightarrow R^{m}$ given by integral matrices.

We use the abbreviations

$$
H=\Lambda^{\bullet} V, \quad H_{k}=\Lambda^{k} V
$$

Let \mathcal{Z} be the category with objects $\mathbf{Z}^{n}(n \geq 0)$ and with morphisms

$$
\operatorname{Hom}_{\mathcal{Z}}\left(\mathbf{Z}^{m}, \mathbf{Z}^{n}\right)=\operatorname{Hom}_{\mathbf{Z}}\left(\mathbf{Z}^{m}, \mathbf{Z}^{n}\right)=M(n, m)
$$

the Z-linear homomorphisms (or integral $n \times m$-matrices).
We consider the functor

$$
F: \mathcal{Z} \rightarrow R \text {-algebras }
$$

$$
F\left(\mathbf{Z}^{n}\right)=\Lambda^{\bullet}\left(V \otimes_{\mathbf{Z}} \mathbf{Z}^{n}\right)=\left(\Lambda^{\bullet} V\right)^{\otimes n}=H^{\otimes n}
$$

Here we used the isomorphisms J_{n} for the identifications.
This way we get an action of integral matrices on the tensor powers of H (by acting on the \mathbf{Z}^{n}). We denote this action by

$$
\begin{gathered}
M(n, m) \times H^{\otimes m} \rightarrow H^{\otimes n} \\
(A, x) \mapsto[A](x)
\end{gathered}
$$

The basic morphisms S, μ, Δ (the antipode, the product and the coproduct of H as a graded bicommutative Hopf algebra) have the descriptions

$$
S=[-1], \quad \mu=[1,1], \quad \Delta=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Using the matrix notation the sometimes tiring computations in terms of S, μ, Δ can be written in a more compact form.

For example, the operation

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]: H^{\otimes 2} \rightarrow H^{\otimes 2}
$$

is in concrete terms the morphism

$$
\begin{gathered}
(\mu \otimes 1) \circ(1 \otimes \Delta):\left(\Lambda^{\bullet} V\right)^{\otimes 2} \rightarrow\left(\Lambda^{\bullet} V\right)^{\otimes 2} \\
x \otimes y \mapsto \sum_{i} x y_{i} \otimes y_{i}^{\prime} \quad\left(\sum_{i} y_{i} \otimes y_{i}^{\prime}=\Delta(y)\right)
\end{gathered}
$$

See my text "Notes on strict bicommutative Hopf algebras" for more examples.
2.2. Rewriting the exchange relations. The antipode S acts on H_{r} by multiplication with $(-1)^{r}$. The involution τ acts like this:

$$
\begin{aligned}
& \tau: H_{r} \otimes H_{s} \rightarrow H_{s} \otimes H_{r} \\
& \tau(x \otimes y)=(-1)^{r s} y \otimes x
\end{aligned}
$$

For $r=s$ this gives

$$
\sigma=\tau(S \otimes 1)=\tau(1 \otimes S): H_{r} \otimes H_{r} \rightarrow H_{r} \otimes H_{r}
$$

where σ is the unsigned switch.
It follows that in the definition of A_{r} we may use

$$
\Phi_{1}=(\mu \otimes \mu)(1 \otimes \tau(1 \otimes S) \otimes 1)(\Delta \otimes 1 \otimes 1): H^{\otimes 3} \rightarrow H^{\otimes 2}
$$

instead of Φ. The advantage is that Φ_{1} is expressible in terms of the Hopf algebra structure (which doesn't contain the unsigned switch). In terms of a matrix action:

$$
\Phi_{1}=\left[\begin{array}{ccc}
1 & -1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

By the way, we could use

$$
\Phi_{2}=\left[\begin{array}{ccc}
1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]=(\mu \otimes \mu)(1 \otimes \tau(S \otimes 1) \otimes 1)(\Delta \otimes 1 \otimes 1)
$$

as well: The graded components []$_{a, b}^{a, r, b-r}$ of Φ, Φ_{1}, Φ_{2} are all equal to A_{r}.

3. Proof of Proposition $1(R \subset Q)$

We show that the image of $R_{r}(1 \leq r \leq b)$ is contained in Q.
We may assume $r=b>0$ (the factor Λ^{b-r} in Q_{r} and R_{r} gets just multiplied from the right to Λ^{b}). One has

$$
\begin{gathered}
R_{b}: \Lambda^{a+b} \rightarrow \Lambda^{a} \otimes \Lambda^{b} \\
R_{b}=[\Delta]_{a, b}^{a+b}
\end{gathered}
$$

Since the multiplication

$$
\mu: \Lambda^{a} \otimes \Lambda^{b} \rightarrow \Lambda^{a+b}
$$

is surjective, it suffices to show that the image of

$$
[\Delta \mu]_{a, b}^{a, b}: \Lambda^{a} \otimes \Lambda^{b} \rightarrow \Lambda^{a} \otimes \Lambda^{b}
$$

is contained in Q.

One has (by the bialgebra axiom)

$$
\begin{aligned}
\Delta \mu & =(\mu \otimes \mu)(1 \otimes \tau \otimes 1)(\Delta \otimes \Delta) \\
& =\Phi_{1}(1 \otimes S \otimes 1)(1 \otimes \Delta)
\end{aligned}
$$

Taking the graded components []$_{a, b}^{a, b}$ this is modulo Q the same as

$$
(1 \otimes \mu)(1 \otimes S \otimes 1)(1 \otimes \Delta)=0
$$

(The last expression is trivial by the Hopf algebra axiom for the antipode.)

4. Proof of Proposition $1(Q \subset R)$

We show that the image of $Q_{r}(1 \leq r \leq b)$ is contained in

$$
R=\sum_{r=1}^{b} \operatorname{im}\left(R_{r}\right)
$$

Again we may assume $r=b>0$. One has

$$
\begin{gathered}
A_{b}: \Lambda^{a} \otimes \Lambda^{b} \rightarrow \Lambda^{a} \otimes \Lambda^{b} \\
A_{b}=\left[\Phi_{1}^{\prime}\right]_{a, b}^{a, b}
\end{gathered}
$$

with

$$
\begin{aligned}
\Phi_{1}^{\prime} & =(\mu \otimes 1)(1 \otimes \tau)(\Delta \otimes S) \\
& =\left[\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

The matrix $\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]$ restricted to $\Lambda^{a} \otimes \Lambda^{b}$ is a morphism

$$
\Lambda^{a} \otimes \Lambda^{b} \rightarrow \bigoplus_{r \geq 0} \Lambda^{a+r} \otimes \Lambda^{b-r}
$$

The matrix $\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ is on $\Lambda^{a+r} \otimes \Lambda^{b-r}$ just R_{r} (after projection to $\Lambda^{a} \otimes \Lambda^{b}$). So modulo R there just remains the term for $r=0$. But that's the identity. Hence $Q_{b}=A_{b}-\mathrm{id}$ is trivial $\bmod R$.

5. Proof of Proposition 2

We have to show

$$
R=R^{\prime}:=\sum_{r=1}^{b} \operatorname{im}\left(R_{r}^{\prime}\right)
$$

We will use the matrix identity

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
-1 & 0
\end{array}\right]
$$

Informally speaking, if $a \geq b$ the matrix on the left yields the R_{r}^{\prime} and the second matrix yields R_{r}. If $a \leq b$ it is the other way round.

To gain symmetry, we drop the condition $a \leq b$ and put

$$
k=\max (a, b)
$$

Let $d=k+r$ with $r>0$ and $c=a+b-d$. Taking the component []$_{a, b}^{c, d}$ the matrix identity yields a decomposition

$$
\Lambda^{c} \otimes \Lambda^{d} \rightarrow \bigoplus_{e+f=c, e \geq 0} \Lambda^{e+d} \otimes \Lambda^{f} \rightarrow \Lambda^{a} \otimes \Lambda^{b}
$$

If $k=a$, the composition is R_{r}^{\prime} and the map on the right is the sum of the R_{e+r}. If $k=b$, the composition is R_{r} and the map on the right is the sum of the R_{e+r}^{\prime}.

References

[1] W. Fulton, Young tableaux, London Mathematical Society Student Texts, vol. 35, Cambridge University Press, Cambridge, 1997, With applications to representation theory and geometry.

Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany

E-mail address: rost at math.uni-bielefeld.de
$U R L$: www.math.uni-bielefeld.de/~rost

