NOTES ON INVARIANTS FOR QUADRATIC FORMS

MARKUS ROST

All invariants take value in a cycle module M.

1. Isometry invariants

The Stiefel-Whitney classes w_i

2. Similiarity invariants

H denotes a hyperbolic plane, \mathbf{H}_k denotes a hyperbolic space of dimension 2k.

Lemma 1. Let q be a quadratic form of dimension i + 2k - 1, $k \ge 0$. Then

$$v_i(q) = w_i(q - \mathbf{H}_k)$$

is a similarity invariant.

Proof. Note that $v_i(cq) - v_i(q)$ can be expressed in the $w_j(q)$, $j \le i-1$. Therefore it suffices to check $v_i(cq) - v_i(q) = 0$ for q with anisotropic dimension less that i, that is, one reduces to k = 0. But then $v_i(q) = 0$.

Lemma 2. Any similarity invariant α for n-dimensional forms can be uniquely written as

$$\alpha = \alpha_0 + \sum_{i=1}^{\lfloor \frac{n}{2} \rfloor} v_{n+1-2i}(q) \alpha_i$$

with $2\alpha_i = 0$ for i > 0.

Proof. By induction on n. For (n-2)-dimensional forms q' define

$$\alpha'(q') = \alpha(q' \perp \mathbf{H}).$$

Then α' is a similarity invariant and therefore

$$\alpha'(q') = \alpha_0 + \sum_{i=1}^{\lfloor \frac{n-2}{2} \rfloor} v_{n+1-2i}(q')\alpha_i.$$

for some α_i with $2\alpha_i = 0$ for i > 0. After replacing α by

$$\alpha - \alpha_0 - \sum_{i=1}^{\left[\frac{n-2}{2}\right]} v_{n+1-2i} \alpha_i.$$

we may assume that α vanishes for isotropic q.

Write

$$\alpha = \beta_0 + \sum_{i=1}^n w_i \beta_i$$

Date: December 1998.

MARKUS ROST

Then

$$\alpha(cq) - \alpha(q) = \{c\}(w_{n-1}(q)\beta_n + \sum_{i=0}^{n-2} w_i(q)\gamma_i)$$

for some γ_i . It follows that $\beta_n = 0$. After replacing α by $\alpha - v_{n-1}\beta_{n-1}$ we may assume $\beta_{n-1} = 0$.

But then it suffices to test α on forms $\langle t_1, \ldots, t_{n-2}, 1, -1 \rangle$. It follows that $\alpha = 0$ since α vanishes on isotropic q.

Lemma 3. Let q be a quadratic form of dimension i and of determinant $-(-1)^i$. Then $w_i(q) = 0$.

Proof. Let
$$q = \langle t_1, \dots, t_{i-1}, -(-1)^i t_1 \cdots t_{i-1} \rangle$$
 and let $x_j = \{t_j\}$. Then
 $w_i(q) = x_1 \cdots x_{i-1} ((i-1)\{-1\} + x_1 + \dots + x_{i-1}))$
 $= x_1 \cdots x_{i-1} ((i-1)\{-1\} + \{-1\} + \dots + \{-1\}) = 0$

Lemma 4. Let q be a quadratic form of dimension 2i + 2k and of determinant $-(-1)^k$, $k \ge 0$. Then

$$\eta_i(q) = w_{2i}(q - \mathbf{H}_k)$$

is a similarity invariant.

Proof. Note that $\eta_i(cq) - \eta_i(q)$ can be expressed in the $w_j(q), j \leq 2i-1$. Therefore it suffices to check $\eta_i(cq) - \eta_i(q) = 0$ for q with anisotropic dimension less that 2i, that is, one reduces to k = 0. But then $\eta_i(q) = 0$ by the previous lemma. \Box

The last lemma can be extended to forms of arbitrary fixed determinant δ :

Lemma 5. Let q be a quadratic form of dimension 2i + 2k and of determinant δ , $k \ge 0$. Then

$$\eta_i(q) = w_{2i}(q - \mathbf{H}_k) \mod \{-(-1)^k \delta\} M(F)$$

is a similarity invariant.

Recall that $\operatorname{disc}(q) = (-1)^n \operatorname{det}(q)$

Note that we also obtained also invariants for 2n-dimensional forms of fixed discriminant δ :

$$\overline{\eta}_i(q) = j(\eta_i(q)) \in H^{2i}(F, \mu_4^{\otimes i}(\delta))$$

where j denotes the injective (modulo Milnor's conjecture) map

$$K_{2i}F/(2K_{2i}F + \{-(-1)^i\delta\}K_{2i-1}F) \to H^{2i}(F,\mu_4^{\otimes i}(\delta)).$$

Theorem 6. Every similarity invariant for 2n-dimensional forms of fixed discriminant δ can be uniquely written as

$$\alpha = \alpha_0 + \sum_{i=1}^{n-1} \eta_i \alpha_i$$

with $2\alpha_i = 0$ and $\{-(-1)^i\delta\}\alpha_i = 0$ for i > 0.

Proof. Not yet provided.

NWF I - MATHEMATIK, UNIVERSITÄT REGENSBURG, D-93040 REGENSBURG, GERMANY *E-mail address:* markus.rost@mathematik.uni-regensburg.de *URL:* http://www.physik.uni-regensburg.de/~rom03516

 $\mathbf{2}$