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This text contains some remarks on vector product algebras and the graphical
techniques. It is partially contained in the diploma thesis of D. Boos and S. Maurer.

This material dates back to 1995-1996 and was compiled in July 2004. Last
changes: July 12, 2004. April 11, 2024 (equation numbers on page 5 were missing).

1. Vector Product Algebras

A vector product algebra consists of a vector space V together with a nondegenerate
symmetric bilinear form 〈 , 〉 on V , and a linear map V ⊗ V → V , x⊗ y 7→ x× y such
that

〈x× y, z〉 = 〈x, y × z〉, x× x = 0, (x× y)× x = 〈x, x〉y − 〈x, y〉x

In a vector product algebra one has x× (y × x) = (x× y)× x. Moreover 〈x× y, z〉 is
alternating.

V is called associative if

(x× y)× z = 〈x, z〉y − 〈y, z〉x

V is called commutative if the product is trivial:

x× y = 0

In this case 〈x, x〉y = 〈x, y〉x.

2. The Fundamental Relation in Vector Product Algebras

For a vector product algebra one introduces the following tensors Rn: V ⊗n → V .

R1(x) = x

R2(x, y) = x× y,

R3(x, y, z) = (x× y)× z − y〈x, z〉+ x〈y, z〉

R4(x1, x2, x3, t) = R3(x1, x2, x3)× t−
3∑

i=1

xi〈xi+1 × xi+2, t〉+
3∑

i=1

xi+1 × xi+2〈xi, t〉

with i taken mod3.

One has the following fundamental relation for vector product algebras. It holds
over any ring F and for possibly degenerate bilinear forms 〈 , 〉.
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(2.1) Main Lemma. 2 ·R4 ≡ 0.

Proof. Put

∆(u, v, w) = (u× v)× w + u× (v × w)

and check the equality

2((x× y)× z)× t =
(∗)

∆(x× y, z, t)−∆(x, y, z × t) + x×∆(y, z, t)−∆(x, y × z, t) + ∆(x, y, z)× t

In fact, you will find the cancelling terms:

(x× y)× (z × t), x× (y × (z × t)), x× ((y × z)× t), (x× (y × z))× t

On the other hand, the anti-commutativity and the polarization of the second axiom
give

∆(u, v, w) = 2w〈u, v〉 − u〈v, w〉 − v〈u,w〉

Inserting this in (∗) leads to the claim.

3. Relations for the Dimension in a Vector Product Algebra

We next consider the norms Nn of the tensors Rn. Let

Qn(x1, . . . , xn+1) =
〈
Rn(x1, . . . , xn), xn+1

〉
and put

Nn = NV ⊗(n+1)(Qn)

In other words, if ei is an orthonormal basis of V (over some algebraic closure of V ),
then

Nn =
∑

i1,...,in+1

Qn(ei1 , . . . , ein+1)2 =
∑

i1,...,in

N
(
Rn(ei1 , . . . , ein)

)
Let d = dimV ∈ F be the dimension of V considered as an element of the ground
field.

Since 2R4 = 0 it follows immediately from the next Proposition that

4d(d− 1)(d− 3)(d− 7) = 0

in any vector product algebra. Similarly for the associative and commutative case.
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(2.2) Proposition.

N1 = d

N2 = d(d− 1)

N3 = d(d− 1)(d− 3)

N4 = d(d− 1)(d− 3)(d− 7)

Proof. The claim for N1 is obvious. Next note

(2.2a)
∑
i

ei × (v × ei) =
∑
i

〈ei, ei〉v −
∑
i

〈ei, v〉ei = dv − v = (d− 1)v

Hence ∑
i

N(x× ei) = (d− 1) N(x)

and

N2 =
∑
i,j

〈ei × ej , ei × ej〉 =
∑
i,j

〈
ei, ej × (ei × ej)

〉
= (d− 1)

∑
i

〈ei, ei〉 = d(d− 1)

Moreover

N3 =
∑
i,j,k

N
(
R3(ei, ej , ek)

)
=
∑
i,j,k

N
(
(ei × ej)× ek)− ej〈ei, ek〉+ ei〈ek, ej〉

)
=
∑
i,j,k

[
N
(
(ei × ej)× ek

)
+ N(ej)〈ei, ek〉2 + N(ei)〈ek, ej〉2

− 2
〈
(ei × ej)× ek, ej

〉
〈ei, ek〉+ 2

〈
(ei × ej)× ek, ei

〉
〈ej , ek〉

− 2〈ei, ek〉〈ej , ek〉〈ek, ei〉
]

= d(d− 1)2 + d2 + d2 − 2N2 − 2N2 − 2d

= d(d− 1)2 + 2d(d− 1)− 4d(d− 1) = d(d− 1)(d− 3)



4 On Vector Product Algebras

Finally, by re-indexing and using 〈ei, ei × ej〉 = 〈ei, ek × ei〉 = 0 one finds:

N4 =
∑
i,j,k,l

N
(
R4(ei, ej , ek, el)

)
=
∑
i,j,k,l

N
(
R3(ei, ej , ek)× el − ei〈ej × ek, el〉 − ej〈ek × ei, el〉 − ek〈ei × ej , el〉

+ ej × ek〈ei, el〉+ ek × ei〈ej , el〉+ ei × ej〈ek, el〉
)

=
∑
i,j,k,l

[
N
(
R3(ei, ej , ek)× el

)
+ 3 ·N(ei)〈ej × ek, el〉2 + 3 ·N(ej × ek)〈ei, el〉2

− 3 · 2
〈
R3(ei, ej , ek)× el, ei

〉
〈ej × ek, el〉

+ 3 · 2
〈
R3(ei, ej , ek)× el, ej × ek

〉
〈ei, el〉

+ 3 · 2〈ei, ej〉〈ej × ek, el〉〈ek × ei, el〉

+ 3 · 2〈ei, ej × ek〉〈ej × ek, el〉〈ei, el〉

+ 3 · 2〈ej × ek, ek × ei〉〈ei, el〉〈ej , el〉
]

=
∑
i,j,k

(d− 1) ·N
(
R3(ei, ej , ek)

)
+ 3 ·

∑
j,k

d ·N(ej × ek) + 3 ·
∑
j,k

d ·N(ej × ek)

+ 3 · 2
∑
i,j,k

〈
R3(ei, ej , ek)× ei, ej × ek

〉
− 3 · 2

∑
i,j,k

〈
R3(ei, ej , ek)× (ej × ek), ei

〉
+ 3 · 2

∑
i,k

〈ei × ek, ek × ei〉

− 3 · 2
∑
j,k

〈ej × ek, ej × ek〉

+ 3 · 2
∑
i,k

〈ei × ek, ek × ei〉

= (d− 1)N3 + 6d·N2 − 12N3 − 18N2 = (d− 1− 12 + 6)N3

= d(d− 1)(d− 3)(d− 7).
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4. Graph Considerations for Vector Product Algebras

We consider 3-valent graphs with cyclically oriented vertices. We describe the orien-
tation at a vertex by replacing it by an oriented disk. The orientation of a disk is
indicated by black or white coloring:

�
(positive),
�

(negative).

First note that rotation around the vertical symmetry axis give the following identities:

� =�(0.1)

% =((0.2)

& ='(0.3)

The following rules (R1) and (R2) are the graph versions of the axioms for vector
product algebras.

(R1)
�

= −
�

(R2) �+� = 2 ·�−�−�
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Here we use the following convention: If in a plane graph no orientation is indi-
cated we understood the positive orientation (black coloring). The rule (R1) makes it
possible to give this orientation to the pictures in this section.

5. Graphical proof of d(d− 1)(d− 3)(d− 7) = 0

We assume now that 2 is invertible in the ground ring and show that the two rules
(R1) and (R2) imply

d(d− 1)(d− 3)(d− 7) = 0

where

d =�
Since 2 is invertible, one has

(1.0) � = 0

by (0.1) and (R1).
Next consider the following consequence of (R2):

1+$ = 2 ·/−0−.
By (1.0) this gives

(1.1) $ = −(d− 1) ·)
This yields immediately

(1.2) C = −(d− 1) ·� = −d(d− 1)
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We next prove Springer’s formula. (R2) gives�
+
�

= 2 ·
�

−
�

−
�

Inserting (1.0) and (1.1) shows�
− (d− 1) ·
�

= −2 ·
�

−
�

− 0

Hence

(1.3)
�

= (d− 4) ·
�

Moreover one finds

(1.4) @ = (d− 4)2 ·D = −d(d− 1)(d− 4)2

by applying (1.3) to both of the triangles and using (1.2).

Now comes the final step. Rule (R2) gives?+@ = 2 ·A−=−>
The two leftmost and the two rightmost graphs are the same. So, after dividing by 2
we have

(1.5) ? =A−=
For the middle term of (1.5) one finds

(1.6) A =E = (d− 4) ·C = −d(d− 1)(d− 4)

Here the first equality follows, since both pictures are just different projections of the
same graphs but with sign changes at two vertices. Rule (R1) give then equality. The
other two equalities follow from (1.3) and (1.2).
To compute the rightmost graph in (1.5) one applies formula (1.1) twice and finds

(1.7) = = (d− 1)2 ·� = d(d− 1)2

The formulas (1.4), (1.6), and (1.7) give the desired relation. �
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Here are some of the translations of the graph formulas above to the algebraic formulas
in [Rost, M., On the Dimension of a Composition Algebra, Doc. Math. 1 No. 10
(1996) 209–214]:

(R1)↔(2.4a)

(R2)↔(2.5a,b)

(1.1)↔(3.1)

(1.2)↔(3.2)

(1.3)↔(3.3)

Exercise. Draw the pictures which derive the relations d(d − 1)(d − 3) = 0 and
d(d − 1) = 0 for “associative” and “commutative” vector product algebras (the “toy
modells” in loc. cit.)

6. Graphical illustration of 2R4 = 0

The relation (R2) gives

�+� =

(1.8)

2 ·�−�−�
Hence

� = −�+ sum of graphs with less vertices

The two graphs differ just by sign and a rotation of order 5. Therefore, iterating this
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relation 5 times yields

2 ·� = sum of graphs with less vertices

This shows that the morphism

V ⊗4 → V, x1 ⊗ x2 ⊗ x3 ⊗ x4 7→ ((x1 × x2)× x3)× x4

can be expressed as a sum of tensors involving only 1 ×-product. The precise formula
for this is

2R4 = 0

Together with (1.0) and (1.1) it follows from (1.8):

(1.1) Proposition. Any closed connected graph with at most 2k − 2 vertices can be
expressed by a polynomial in d of degree ≤ k. In particular, End(∅) is generated by d.

If I remember well one can use (1.8) directly to show at least the following qualitative
result:

(1.2) Proposition. One has P (d) = 0 in End(∅) for some polynomial P ∈ Z[d] of
degree 4.
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