Übungen zu Vertiefung Elementare Zahlentheorie

WS 2010/2011, Blatt 13

Aufgabe 49. (a) Express all primes $p<100$ with $p \equiv 1(\bmod 4)$ as sums of two squares.
(b) Express the integers 325, 442, 2880, 10048, 10049 as sums of two squares.

Aufgabe 50. Which of the integers $n=1965,1966,1967,1968,1969,1970$ are sums of two squares? Find, if possible, a representation of the form $n=x^{2}+y^{2}$.

Aufgabe 51. Let (x, y, z) be a primitive pythagorean triple. Show: Any prime divisor p of z satisfies $p \equiv 1(\bmod 4)\left(\right.$ one has $z=u^{2}+v^{2}$, where u and v are in particular relatively prime).

Aufgabe 52. Show:
(a) If $x^{2}+y^{2}+z^{2}$ is divisible by 4 , then x, y, z are even;
(b) any integer of the form $8 k+7$ with $k \geq 0$ is not a sum of three squares;
(c) any integer of the form $4^{a}(8 k+7)$ with $a \geq 0, k \geq 0$ is not a sum of three squares. (Hint: use induction on a)

Abgabe bis Freitag, 28.1.2011, 12:00 Uhr

