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1 Some basics

Let A be a K-algebra.

Usually we are interested in finite-dimensional A-modules. That is, we as-
sume that K is a field. We write A-mod for the category of finite-dimensional
A-modules. It is an abelian category. The functor D(−) = HomK(−, K)
gives an antiequivalence between the categories A-mod and Aop-mod.

We are especially interested in the case that A is finite-dimensional. Often
K will be an algebraically closed field. In this chapter we do some basics.
Later we shall cover Auslander-Reiten theory, representations of quivers and
other topics.
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1.1 Fitting and Krull-Remak-Schmidt

Let A be a K-algebra. For the rest of this subsection we consider f.d. A-
modules, with K a field. In this case, indecomposable modules have local
endomorphism ring. We proved this before in another way. Here is the usual
way to see it.

Fitting’s Lemma. If M is a finite-dimensional A-module and θ ∈ EndA(M),
then there is a decomposition

M = M0 ⊕M1

such that θ|M0 is a nilpotent endomorphism of M0 and θ|M1 is an invert-
ible endomorphism of M1. In particular, if M is indecomposable, then any
endomorphism is invertible or nilpotent, so EndA(M) is a local ring.

Proof. There are chains of submodules

Im(θ) ⊇ Im(θ2) ⊇ Im(θ3) ⊇ . . .

Ker(θ) ⊆ Ker(θ2) ⊆ Ker(θ3) ⊆ . . .

which must stabilize since M is finite dimensional. Thus there is some n with
Im(θn) = Im(θ2n) and Ker(θn) = Ker(θ2n). We show that

M = Ker(θn)⊕ Im(θn).

If m ∈ Ker(θn) ⊕ Im(θn) then m = θn(m′) and θ2n(m′) = θn(m) = 0, so
m′ ∈ Ker(θ2n) = Ker(θn), so m = θn(m′) = 0. If m ∈ M then θn(m) ∈
Im(θn) = Im(θ2n), so θn(m) = θ2n(m′′) for some m′′. Then m = (m −
θn(m′′)) + θn(m′′) ∈ Ker(θn) + Im(θn).

Now it is easy to see that the restriction of θ to Ker(θn) is nilpotent, and its
restriction to Im(θn) is invertible.

Definition/Lemma. If X and Y are A-modules, we define radA(X, Y ) to be
the set of all θ ∈ HomA(X, Y ) satisfying the following equivalent conditions.
(i) 1X − φθ is invertible for all φ ∈ HomA(Y,X).
(ii) 1Y − θφ is invertible for all φ ∈ HomA(Y,X).
Thus by definition radA(X,X) = J(EndA(X)).

Proof of (i) implies (ii). If u is an inverse for 1X − φθ then 1Y + θuφ is an
inverse for 1Y − θφ.
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Lemma 1.
(a) The radical forms an ideal in the module category, that is, radA(X, Y ) is
closed under addition, and given maps X → Y → Z, if one is in the radical,
so is the composition.
(b) The radical commutes with finite direct sums, that is, radA(X⊕X ′, Y ) =
radA(X, Y )⊕ radA(X ′, Y ) and radA(X, Y ⊕Y ′) = radA(X, Y )⊕ radA(X, Y ′).

Proof. (a) For a sum θ + θ′, let f be an inverse for 1− φθ. Then 1− φ(θ +
θ′) = (1 − φθ)(1 − fφθ′), a product of invertible maps. The composition is
straightforward.

(b) If you keep one variable fixed, it is a K-linear functor, so preserves direct
sums.

Lemma 2. For f.d. modules we have
(i) If X is indecomposable, then radA(X, Y ) is the set of maps which are not
split monos. (θ : X → Y is a split mono if there is a map φ : Y → X with
φθ = 1X , Equivalently if θ is an isomorphism of X with a direct summand
of Y .)
(ii) If Y is indecomposable, then radA(X, Y ) is the set of maps which are
not split epis. (θ : X → Y is a split epi if there is a map ψ : Y → X with
θψ = 1Y . Equivalently if θ identifies Y with a direct summand of X.)
(iii) If X and Y are indecomposable, then radA(X, Y ) is the set of non-
isomorphisms.

Proof. We use Fitting’s Lemma. (i) Suppose θ ∈ Hom(X, Y ). If θ is a split
mono there is φ ∈ Hom(Y,X) with φθ = 1X , so 1 − φθ is not invertible.
Conversely if there is some φ with f = 1 − φθ not invertible, then f is
nilpotent, and so φθ = 1− f is invertible. Then (φθ)−1φθ = 1X , so θ is split
mono. (ii) is dual and (iii) follows.

Krull-Remak-Schmidt Theorem. Any f.d. module can be written as a direct
sum of indecomposable modules,

M ∼= X1 ⊕ · · · ⊕Xn.

Moreover ifM ∼= Y1⊕· · ·⊕Ym is another decomposition into indecomposables,
then m = n and the Xi and Yj can be paired off so that corresponding
modules are isomorphic.

Proof. Given modules X and M , with X indecomposable, we can define a
vector space

t(X,M) = HomA(X,M)/ radA(X,M).
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This is naturally a right EndA(X)-module, and in fact a module for the
division algebra D = End(X)/J(End(X)) is a division algebra. Thus it is a
free right D-module of a certain rank. In fact the rank is

µX(Y ) =
dim t(X, Y )

dimD
.

Clearly if Y is indecomposable, then

µX(Y ) =

{
1 (Y ∼= X)

0 (Y 6∼= X).

Now t(X,M) = t(X,X1 ⊕ · · · ⊕Xn) ∼= t(X,X1)⊕ · · · ⊕ t(X,Xn), so

µX(M) = µX(X1 ⊕ · · · ⊕Xn) = µX(X1) + · · ·+ µX(Xn)

Thus µX(M) is the number of the Xi which are isomorphic to X. Similarly,
it is the number of Yj which are isomorphic to X. Thus these numbers are
equal.

Definition. Let θ : X → Y be a map of A-modules.
We say that θ is left minimal if for α ∈ End(Y ), if αθ = θ, then α is
invertible.
We say that θ is right minimal if for β ∈ End(X), if θβ = θ, then β is
invertible.

Lemma 3. Given a map θ : X → Y of finite-dimensional A-modules
(i) There is a decomposition Y = Y0 ⊕ Y1 such that Im(θ) ⊆ Y1 and X → Y1

is left minimal.
(ii) There is a decomposition X = X0⊕X1 such that θ(X0) = 0 and X1 → Y
is right minimal.

Proof. (i) Of all decompositions Y = Y0⊕Y1 with Im(θ) ⊆ Y1 choose one with
Y1 of minimal dimension. Let θ1 be the map X → Y1. Let α ∈ End(Y1) with
αθ1 = θ1. By the Fitting decomposition, Y1 = Im(αn)⊕ Ker(αn) for n� 0.
Now αnθ1 = θ1, so Im(θ1) ⊆ Im(αn), and we have another decomposition
Y = [Y0⊕Ker(αn)]⊕ Im(αn). By minimality, Ker(αn) = 0, so α is injective,
and hence an isomorphism.

Lemma 4. If θi : Xi → Yi are finitely many right (respectively left) minimal
maps, then so is

⊕
iXi →

⊕
i Yi.

Proof. If not, then by the lemma, there is a non-zero summand X ′ of
⊕

iXi

on which the map is zero. We may assume that X ′ is indecomposable. Let
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fi : X ′ → Xi be the projections. Since θ(X ′) = 0 we have θifi = 0 for
all i. Since X ′ is a summand there are gi : Xi → X ′ with 1X′ =

∑
i gifi.

Thus some gifi is invertible, so fi is a split mono. But θifi = 0, which is
impossible for θi right minimal. Namely, let hifi = 1X′ . Then 1Xi − fihi is
not an automorphism, and θi(1Xi − fihi) = θi.

1.2 Socle, radical and top of a module

Definition. The socle of a module M is the sum of its simple submodules,

socM =
∑

S ⊆M simple

S

The radical of a module M is the intersection of its maximal submodules.

radM =
⋂

N ⊆M , M/N simple

N

Thus the Jacobson radical is J(A) = rad(AA). The top of M is the quotient
topM = M/ radM .

These constructions are functorial: a homomorphism θ : M → N induces
homomorphisms socM → socN , radM → radN and topN → topN .

Moreover the functors are K-linear, so soc(M ⊕N) ∼= socM ⊕ socN , etc.

Recall that a submodule N is an essential submodule of M if for all L ⊆M ,
L 6= 0 implies L ∩ N 6= 0. It is a superfluous submodule if for all L ⊆ M ,
L 6= M implies L+N 6= M .

Lemma 1. Let L be a submodule of M (f.d.)
(i) socM is semisimple and L is semisimple iff L ⊆ socM ,
(ii) L is essential in M iff socM ⊆ L,
(iii) The functor soc is right adjoint to the inclusion of the category of
semisimple modules in A-mod,
(iv) socM = 0 iff M = 0. If M has simple socle then M is indecomposable,
(i’) topM is semisimple and M/L is semisimple iff radM ⊆ L,
(ii’) L is superfluous in M iff L ⊆ radM ,
(iii’) The functor top is left adjoint to the inclusion of the category of semisim-
ple modules in A-mod,
(iv’) topM = 0 iff M = 0. If M has simple top then M is indecomposable.
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Remark. For arbitrary modules over an arbitrary ring topM need not be
semisimple, eg M = ZZ. Also socM need not be essential, but it is the
intersection of the essential submodules. And radM need not be superfluous,
but it is the sum of the superfluous submodules. See Anderson and Fuller,
Rings and categories of modules.

Proof. (i)-(iv) Clear. Use that any non-zero module has a simple submodule.

Now a submodule L of M gives a submodule L⊥ of DM , and under the
identification M ∼= DDM , L is identified with (L⊥)⊥. Now (L + N)⊥ =
L⊥ ∩ N⊥, and by duality (L ∩ N)⊥ = L⊥ + N⊥. Thus (i’)-(iv’) follow by
duality.

Lemma 2. If A is a finite-dimensional algebra and M is an A-module, then
(i) radM = J(A)M .
(ii) socM = {m ∈M : J(A)m = 0}.

Proof. Use that M is semisimple ⇔ J(A)M = 0.

Special case. If A = KQ/I where Q is a quiver and I is an admissible ideal,
then J(A) is generated as a left or right ideal by the arrows. Thus

radM =
∑
a∈Q1

aM socM =
⋂
a∈Q1

{m ∈M : am = 0}.

Any A-module M corresponds to a representation of Q with vector spaces
Mi = eiM and linear maps Ma : Mi →Mj for a : i→ j. We have

(radM)i =
∑
h(a)=i

ImMa (socM)i =
⋂
t(a)=i

KerMa.

1.3 Approximations, covers and envelopes

Definition. We shall call a subcategory C of A-mod a module class provided
(i) It is a full subcategory,
(ii) It is closed under isomorphisms, that is, if X ∼= Y and X ∈ C ⇒ Y ∈ C,
(iii) It is closed under sums and summands, that is, X ⊕ Y ∈ C iff X, Y ∈ C.

A module class is determined by the indecomposables it contains.

Examples.
(1) All modules, the zero module, the semisimple modules.
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(2) If M is any collection of modules, addM is the smallest module class
containing M, so it consists of all modules isomorphic to a direct summand
of a finite direct sum of modules in M.

Definition. Let C be a module class and X a module, not necessarily in C.

A left C-approximation (or preenvelope) of X is a morphism θ : X → C with
C ∈ C, such that for any θ′ : X → C ′ with C ′ in C, there is f : C → C ′ with
θ′ = fθ.

A C-envelope of X is a left minimal left C-approximation of X.

A right C-approximation (or precover) of X is a morphism θ : C → X with
C ∈ C, such that for any θ′ : C ′ → X with C ′ in C, there is f : C ′ → C with
θ′ = θf .

It C-cover of X is a right minimal right C-approximation.

Lemma.
(i) If X has a left C-approximation, it has a C-envelope. Moreover any two
C-envelopes of X are isomorphic. If Xi → Ci are envelopes, so is

⊕
iXi →⊕

iCi
(ii) If X has a right C-approximation, it has a C-cover. Moreover any two
C-covers of X are isomorphic. If Ci → Xi are covers, so is

⊕
iCi →

⊕
iXi

Proof. Use lemmas about left and right minimal maps.

Examples.
(i) M → topM is a semisimple-envelope and socM → M is a semisimple
cover.

(ii) More generally, if the inclusion i : C → A-mod has a left adjoint L, then
the natural map M → i(LM) is a C-envelope, and if it has a right adjoint
R, then i(RM)→M is a C-cover.

(iii) For any modules M,X the map X → Mn given by a spanning set of
the vector space Hom(X,M) is a left addM -approximation of X and the
map Mm → X given by a spanning set of Hom(M,X) is a right addM -
approximation of X.
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1.4 Projectives and injectives for f.d. algebras

Now let A be a finite-dimensional algebra. By module we mean f.d. module.

The projective modules form the module class PA = addA and the injectives
form the module class IA = addD(AA). (Note that D(AA) really is an
injective module, not just with respect to other finite-dimensional modules,
since HomA(−, DA) ∼= HomK(A⊗A −, K) ∼= D(−) is exact.)

Lemma 1. Any module M has an injective envelope M → E(M) and a
projective cover P (M)→M .

Proof. Already known, or use left and right addN -approximations, where
N = A or DA.

Lemma 2. Let θ : M → I be a map with I injective. The following are
equivalent
(i) θ is an injective envelope (that is, an IA-envelope).
(ii) θ is 1-1 and Im θ is essential in I.
(iii) the induced map socM → soc I is an isomorphism.

Proof. (i)⇒ (ii) Recall that any module M embeds in some injective module
(for if (Aop)n � DM then M ↪→ (DA)n). By the injective approximation
property, θ must be 1-1. Suppose the X is a non-zero submodule of I with
X∩Im θ = 0. The projection onto Im θ defines an endomorphism on X⊕Im θ,
and by the injective property it extends to an endomorphism φ of I. Now
φθ = θ but φ(X) = 0, so φ is not an automorphism, contradicting minimality.

(ii)⇒ (i) By the injective property, θ is a left injective-approximation. More-
over if φ ∈ End(I) and φθ = θ, then Im θ ∩ Kerφ = 0, so Kerφ = 0, so by
dimensions, φ is an automorphism. Thus θ is left minimal.

(ii) ⇒ (iii). Clearly the map socM → soc I is injective. Since socM is
essential in θ, θ(socM) = soc θ(M) is essential in Im θ. Now this is essential
in M , and hence θ(socM) is essential in M . Thus it contains soc I.

(iii)⇒ (ii). Ker θ∩ socM = 0 so since socM is essential in M we must have
Ker θ = 0, so θ is 1-1. If Im θ ∩X = 0, with X a non-zero submodule of I,
then X has a simple submodule S and θ(socM) ∩ S = 0. Then θ(socM) is
strictly contained in θ(socM)⊕ S ⊆ soc I.

Lemma 2’. Let θ : P → M be a map with P projective. The following are
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equivalent
(i) θ is a projective cover (that is, a PA-cover).
(ii) the induced map topP → topM is an isomorphism.
(iii) θ is onto and Ker θ is superfluous in P .

Proof. Dual.

Lemma 3. Injectives are indecomposable iff they have simple socle. Projec-
tives are indecomposable iff they have simple top. There are 1:1 correspon-
dences between indecomposable projectives, simple modules, and indecom-
posable injectives, S 7→ P (S), P 7→ topP , S 7→ E(S), I 7→ soc I.

Proof. E(S) has simple socle S, so it must be indecomposable.

If I is injective and has simple S as a submodule, then one gets a map
E(S)→ I, and since S is essential in E(S), it must be injective. Thus E(S)
is a summand of I. Thus if I is indecomposable injective it has simple socle,
and if it has simple socle S then I ∼= E(S).

Notation. The algebra A/J(A) is semisimple, so it has Wedderburn decom-
position Mn1(D1) ⊕ · · · ⊕Mnr(Dr). There are simple modules S[i] = Dni

i

(i = 1, . . . , r). They have projective covers P [i] and injective envelopes I[i].
Moreover Di

∼= EndA(S[i])op, ni = dimSi/ dimDi.

Since top AA ∼=
⊕

S[i]ni , we have AA ∼=
⊕

P [i]ni .

If A/J(A) ∼= K × · · · ×K (for example if A is basic and K is algebraically
closed), then A ∼= KQ/I for some quiver Q and admissible ideal I. In this
case the simple modules S[i] correspond to the vertices, P [i] = Aei and
I[i] = D(eiA).

Example. The commutative square algebra with source 1 and sink 4 has
P [1] ∼= I[4].

Definition. The Nakayama functor is

ν(−) = DHomA(−, A) : A-mod→ A-mod.

Lemma 4. (i) ν is naturally isomorphic to DA⊗A −.
(ii) ν has right adjoint

ν−(−) = HomA(D(−), A) ∼= HomA(DA,−) : A-mod→ A-mod.

(Here HomA(D(−), A) is a space of homomorphisms between rightA-modules.)
(iii) ν induces an equivalence PA → IA with inverse equivalence given by ν−.
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(iv) Hom(X, νP ) ∼= DHom(P,X) for X,P left A-modules, P projective.
(v) ν(P [i]) ∼= I[i].

Proof. (i) D(DA⊗A X) ∼= HomA(X,DDA) ∼= Hom(X,A). Now apply D.

(ii) Clear.

(iii) Recall that the contravariant functor HomA(−, A) : A-mod→ Aop-mod
gives an antiequivalence PA → PAop . Now duality gives an antiequivalence
PAop → IA.

(iv) The composition

Hom(P,A)⊗A X ∼= Hom(P,A)⊗A Hom(A,X)→ Hom(P,X)

is an isomorphism, since it is for P = A. Thus

DHom(P,X) ∼= HomK(Hom(P,A)⊗A X,K)

∼= Hom(X,HomK(Hom(P,A), K)) = Hom(X, νP ).

(v) ν(P [i]) is indecomposable injective and we have Hom(S[i], ν(P [i])) ∼=
DHom(P [i], S[i]) 6= 0.

1.5 Projective-injective modules

Example. The commutative square algebra with source 1 and sink 4 has
P [1] ∼= I[4]. But the other indecomposable projectives are not injective.

Modules which are both projective and injective can be useful.

Lemma. Let P be a projective-injective module, and for simplicity suppose
it is a direct summand of A. Let I = SA ⊆ A be the ideal generated by
S = socP . If M is an indecomposable A-module, then either M is a direct
summand of P or IM = 0.

Proof. If IM 6= 0, then SM 6= 0. Thus there is some m ∈ M with Sm 6= 0.
Identifying M ∼= HomA(A,M), m corresponds to a homomorphism θ : A→
M with θ(S) 6= 0. Write P =

⊕
i Pi with the Pi indecomposable. Then some

θ(socPi) 6= 0. Thus the restriction of θ to Pi is injective. Thus Pi embeds in
M . But Pi is an injective module, so it is a direct summand of M .
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In the example, any indecomposable module is either P [1] or a module for
the algebra give by a square with two zero relations.

Definitions. We define the following classes of algebras with the obvious
implications. They are all left-right symmetric.

A symmetric⇒ A Frobenius⇒ A self-injective⇒ A QF-3

(i) A is symmetric if AAA ∼= ADAA. Equivalently if there is a bilinear form
(−,−) : A× A→ K which is
- non-degenerate: (a, b) = 0∀b⇒ a = 0, (a, b) = 0∀a⇒ b = 0,
- associative: (ab, c) = (a, bc), and
- symmetric: (a, b) = (b, a).
The corresponding map A → DA is a 7→ (a,−). It follows that I[i] =
ν(P [i]) ∼= DA⊗A P [i] ∼= A⊗A P [i] ∼= P [i].

(ii) A is Frobenius if AA ∼= ADA. Equivalently if there is a bilinear form
which is non-degenerate and associative.

(iii) A is self-injective (or quasi-Frobenius) if AA is an injective module.
Equivalently add AA = add ADA. Equivalently the modules P [i] and I[j] are
the same, up to a permutation.

(iv) A is QF-3 (in the sense of Thrall) if A has a faithful projective-injective
module, or equivalently A embeds in a projective-injective module, or equiv-
alently the injective envelope of any projective module is projective.

A module M is faithful if am = 0 for all m ∈M implies a = 0, that is, if the
map A→ EndK(M) is injective.

A f.d. A-module M is faithful if and only if there is an embedding A→Mn

for some n. Namely, if A ↪→ Mn, a ∈ A and am = 0 for all m ∈ M , then
ax = 0 for all x ∈ Mn, so a1 = 0 for 1 ∈ A. Thus a = 0. Conversely, if
M is faithful, choose a basis m1, . . . ,mn of M . This gives a map A → Mn,
a 7→ (am1, . . . , amn). If a 7→ 0, then ami = 0 for all i, so am = 0 for all
m ∈M .

Examples. (1) The group algebra KG of a finite group is symmetric with
(a, b) = λ1 where ab =

∑
g∈G λgg.

(2) If Q is the cyclic quiver with n vertices then KQ/(KQ+)k+1 is Frobenius,
and it is symmetric iff n|k. The bilinear form (a, b) is the sum of coefficients
of paths of length k in ab.
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(3) The commutative square algebra with source 1 and sink 4 is QF-3 because
any indecomposable projective has socle S[4], so embeds in I[4] ∼= P [1].

(4) For a commutative algebra the concepts are the same ((ii)⇒(i) since
(a, b) = (1a, b) = (1, ab) = (1, ba) = (b, a), (iii)⇒(ii), since the algebra
is basic, and (iv)⇒(iii) since , then (1 − e)Ae = 0, so it Ae is a faithful
projective-injective, then e = 1). Commutative Frobenius algebras appear in
topological quantum field theory.

1.6 Uniserial modules and Nakayama algebras

Definition. A module M is uniserial if its submodules are totally ordered by
inclusion, that is, if N,N ′ ⊆M , then either N ⊆ N ′ or N ′ ⊆ N .

A composition series of a module M is a chain of submodules 0 = M0 ⊂
M1 ⊂ · · · ⊂Mn = M such that each Mi/Mi−1 is simple. Since M is f.d., any
chain of submodules can be refined to give a composition series. Now M is
uniserial iff it has a unique composition series.

Example. If S and T are simple modules and 0 → S → M → T → 0 is
non-split, then M is uniserial. (If L is a submodule with L 6= 0, S,M , then
L+ S = M , and L ∩ S = 0, so the sequence splits.)

Lemma.
(i) Any uniserial module is indecomposable, with simple top and socle, and
only finitely many submodules.
(ii) Any submodule or quotient of a uniserial module is uniserial.
(iii) M is a uniserial A-module iff D(M) is a uniserial Aop-module.
(iv) M is uniserial iff the chain

M ⊇ radM ⊇ rad2M ⊇ · · · ⊇ radn−1M ⊇ radnM = 0

is a composition series for suitable n.

Proof. (i)-(iii) trivial. (iv) It suffices to show that if the chain is a composition
series, then every submodule L of M is equal to radiM , some i. Let i be
maximal with L ⊆ radiM If i = n then L = 0, otherwise radiM/ radi+1M
is simple, so radi+1 M is the unique maximal submodule of radiM . Since L
is not contained in radi+1 M , we must have L = radiM .

Definition. A f.d. algebra A is a Nakayama algebra if the indecomposable
projective left and right A-modules are uniserial. It is equivalent that the in-
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decomposable projective modules and the indecomposable injective modules
are all uniserial.

Proposition 1. If A = KQ/I with Q connected and I admissible, then A is
Nakayama iff Q is a linear or cyclic quiver.

Proof. If the quiver is linear or cyclic, then for each vertex i there is a unique
maximal path an . . . a1 with tail at i and not in I. Then radj P [i] is spanned
by the paths ak . . . a1 with k ≥ j. Thus the radical series is a composition
series. Thus P [i] is uniserial. Similarly for the indecomposable projective
right modules.

If two arrows a, b have tail at i then the submodules Aa and Ab of Aei = P [i]
are incomparable, for if Aa ⊆ Ab, then there is x ∈ KQ with a − xb ∈ I ⊆
(KQ+)2, which is impossible. Similarly for right modules if two arrows have
tail at i.

Proposition 2.
(i) A Nakayama ⇒ A/I Nakayama for any ideal I.
(ii) A Nakayama ⇒ A QF-3.
(iii) A/J(A)2 QF-3 ⇒ A Nakayama.
Thus, for example, A is Nakayama ⇔ A/I is QF-3 for all I.

Proof. (i) Write A =
⊕

Pi with Pi indecomposable projective. Then
A/I =

⊕
Pi/IPi, a direct sum of uniserial modules, so the indecomposable

projective left A/I-modules are uniserial. Similarly for right modules.

(ii) We show that if P is indecomposable projective, then so is E(P ). Since
P has simple socle, so does E(P ). Thus it is indecomposable. Thus it is
uniserial, so it has simple top. If θ : P ′ → E(P ) is its projective cover, then
P ′ is indecomposable. This gives an exact sequence 0→ Ker θ → θ−1(P )→
P → 0. Now θ−1(P ) is uniserial, so indecomposable, but this sequence splits,
so we must have Ker θ = 0.

(iii) We show the indecomposable projective left modules are uniserial. For
right modules it is dual.

First we show that A/J2 in Nakayama. Let P be an indecomposable pro-
jective A/J2-module. Thus radP = JP is semisimple. We show it is zero
or simple. We have P ⊆ E(P ), where E(P ) denotes the injective enve-
lope as an A/J2-module, and E(P ) is projective for A/J2. If P ⊆ JE(P ),
then JP = 0. Thus suppose P 6⊆ JE(P ). We decompose E(P ) into inde-
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composables, E(P ) =
⊕

Pi. Then one of the maps topP → topPi is an
isomorphism, so P → Pi is an isomorphism, so P is injective, so E(P ) = P .
Then JP is semisimple, but P has simple socle, so JP is simple or zero.

Now we show by induction on n that A/Jn is Nakayama for n > 2. Let P
be an indecomposable projective for A/Jn. Then P/J2P is a projective for
A/J2, and it has simple top, so it is indecomposable, so JP/J2P is zero or
simple. Thus JP is a module for A/Jn−1 which is zero or has simple top, so
it is uniserial. Thus P is uniserial.

Theorem. Any indecomposable module for a Nakayama algebra is uniserial.
Thus any indecomposable module is a quotient of an indecomposable pro-
jective, so there are only finitely many indecomposable modules - Nakayama
algebras have finite representation type.

Proof. We prove this for Nakayama algebras A by induction on dimA.

Now A has an indecomposable projective-injective module P . We can embed
it as an ideal in A. Let I = SA, the ideal generated by S = socP . Then any
indecomposable module for A is either isomorphic to P , so uniserial, or an
indecomposable module for A/I, so uniserial by induction.

Recall that a f.d. representation of a quiver is nilpotent if there is some m
such that any path of lenght ≥ m is zero in the representation. For a quiver
without oriented cycles all representations are nilpotent. If I is an admissible
ideal then any KQ/I-module corresponds to a nilpotent representation of Q.

Corollary. (i) Any f.d. indecomposable nilpotent representation M of a lin-
ear or cyclic quiver Q is isomorphic to (KQ/KQm

+ )ei for some vertex i and
some m.
(ii) Any f.d. indecomposable representation of a cyclic quiver is either nilpo-
tent or isomorphic to one of the form

V
1−→ V

1−→ . . .
1−→ V

x−→ V (the two ends identified)

where V = K[x]/(f(x)n) with f(x) a monic irreducible polynomial 6= x in
K[x]. In particular if K is algebraically closed, f(x) = x− λ, then V ∼= Kn

and x corresponds to the Jordan block Jn(λ).

Proof. (i) M is a module for KQ/(KQ+)k for some k, which is Nakayama.

(ii) Let Q be cyclic with N vertices. Let α ∈ KQ be the sum of all paths of
length N . Then α is a central element of KQ, so it induces an element of
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EndKQ(M). By Fitting’s Lemma, this element must be nilpotent or invert-
ible. If nilpotent, then M is nilpotent. If invertible, then all paths of length
N in M must be invertible. Thus all arrows in M must be invertible. Thus
M is of the indicated form for some for some K[x]-module V on which x acts
invertibly. Now V must be indecomposable, so it has the stated form.

1.7 Homological algebra for f.d. algebras

Definition. A projective resolution

· · · → P2
d2−→ P1

d1−→ P0
ε−→M → 0

is minimal if the maps ε : P0 →M , d1 : P1 → Ker(ε), d2 : P2 → Ker(d1) and
so on, are projective covers. Dually for an injective resolution

0→M
ε−→ I0 d0−→ I1 d1−→ I2 → . . . ,

the maps ε : M → I0, I0/ Im(ε) → I1, I1/ Im(d0) → I2 and so on must be
injective envelopes.

Minimal projective and injective resolutions of M exist and are unique up to
isomorphism.

Lemma 1.
The multiplicity of I[i] in Ik is µI[i](I

k) = dim Extk(S[i],M)/ dimDi, and
The multiplicity of P [i] in Pk is µP [i](Pk) = dim Extk(M,S[i])/ dimDi.

Proof. By minimality, any element of soc I i is in the image of the map I i−1 →
I i, so is killed by the map I i → I i+1. Thus in the complex Hom(S[i], I∗), the
differential is zero. Thus

dim Extk(S[i],M) = dim Hom(S[i], Ik) = dim End(S[i]).µI[i](I
k).

Lemma 2. If A = KQ/I with I admissible, then the number of arrows from
i to j in Q is dim Ext1(S[i], S[j]).

Proof. Since I is admissible, I ⊆ (KQ)2
+. Now P [i] = (KQ/I)ei, so

radP [i] = ((KQ)+/I)ei, and rad radP [i] = ((KQ)2
+/I)ei. Thus

top(radP [i]) ∼= ((KQ)+/(KQ)2
+))ei ∼=

⊕
j

S[j]nij
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where nij is the number of arrows from i to j. Then in the minimal projective
resolution of S[i],

· · · → P1 → P [i]→ S[i]→ 0

P1 is the projective cover of radP [i], so topP1
∼= top(radP [i]), so the multi-

plicity of P [j] is nij. Thus dim Ext1(S[i], S[j]) = nij.

Lemma 3. The following are equivalent for a module M
(i) proj. dimM ≤ n
(ii) Extn+1(M,S) = 0 for all simples S.
(iii) the minimal projective resolution of M has Pk = 0 for k > n.
Similarly for the injective dimension.

Proof. (i) implies (ii) is clear.

(ii) implies (iii). By the lemma above, the minimal projective resolution of
M has Pn+1 = 0.

(iii) implies (i). Trivial.

Proposition. The global dimension of a f.d. algebra is the maximum of the
projective dimensions of its simple modules.

Proof. If the maximum is n, we need to show that every module, even
infinite-dimensional, has projective dimension at most n. Now every sim-
ple S has a projective resolution of length ≤ n. Thus every semisimple
module has a projective resolution of length ≤ n, so every semisimple mod-
ule has projective dimension ≤ n. Now every module X has a filtration
X ⊇ J(A)X ⊇ · · · ⊇ J(A)NX = 0 in which the quotients are semisimple,
and the long exact sequence shows that an extension of modules of projective
dimension ≤ n again has projective dimension ≤ n.

Corollary. For a f.d. algebra, the left and right global dimensions are the
same.

Proof. If the right global dimension is ≤ n, then the simple right modules
have injective resolutions of length ≤ n. Dualizing, the simple left modules
have projective resolutions of length ≤ n. Thus the left global dimension is
≤ n.

Example. If A = KQ/I with I admissible, and Q has no oriented cycles,
then A has finite global dimension. We show by induction that if i is a vertex
and every path starting at i has length ≤ n then proj. dimS[i] ≤ n. If n = 0

16



then i is a sink and S[i] = P [i] is projective. Otherwise there is an exact
sequence

0→ radP [i]→ P [i]→ S[i]→ 0.

Now radP [i] is an iterated extension of simples S[j] for which there is
a non-trivial path i → j. Thus by induction proj. dimS[j] < n. Thus
proj. dim radP [i] < n. Thus proj. dimS[i] ≤ n.

Recall that a hereditary algebra is one with global dimension ≤ 1. Recall
that path algebras KQ are hereditary.

Theorem. If A is a f.d. hereditary algebra and A/J(A) ∼= K × · · · ×K (for
example if A is basic and K is algebraically closed), then A is isomorphic to
a path algebra KQ.

Proof. The algebra can be written as A = KQ/I with I admissible. We
show I = 0. Since I.KQ+ ⊆ I we have an exact sequence of KQ-modules

0→ I/(I.KQ+)→ KQ+/(I.KQ+)→ KQ+/I → 0.

The middle module is annihilated by I, so this is a sequence of A-modules.
The RH module is a submodule of A = KQ/I, so it is projective as an
A-module. Thus the sequence splits. Letting

M = KQ+/(I.KQ+), N = I/(I.KQ+)⊕KQ+/I.

we deduce that M ∼= N . Thus M/(KQ+)M ∼= N/(KQ+)N , which gives

KQ+/KQ
2
+
∼= (I/(KQ+.I + I.KQ+))⊕ (KQ+/KQ

2
+).

Thus by dimensions, I = KQ+.I + I.KQ+. Now if I 6= 0 there is a maximal
k such that I ⊆ (KQ)k+. But then I = KQ+.I + I.KQ+ ⊆ (KQ)k+1

+ , a
contradiction.
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2 Auslander-Reiten Theory

Throughout, A is a f.d. K-algebra, and we consider f.d, modules.

2.1 The transpose

We consider the contravariant functor M 7→M∨ = HomA(M,A) : A-mod→
Aop-mod. It gives an antiequivalence PA → PAop . Given a left (or right)
module M , we fix a minimal projective presentation

P1
f−→ P0

g−→M → 0.

That is, g : P0 → M and f : P1 → Ker(g) are projective covers. The
transpose TrM is the cokernel of the map f∨ : P∨0 → P∨1 . If M is a left
A-module, then TrM is a left Aop-module. Thus there is an exact sequence

0→M∨ → P∨0 → P∨1 → TrM → 0

Note that Tr doesn’t define a functor on the module categories.

Lemma.
(i) Up to isomorphism, TrM doesn’t depend on the choice of minimal pro-
jective presentation of M .
(ii) If P is projective, then TrP = 0.
(iii) Tr(M ⊕N) ∼= TrM ⊕ TrN .
(iv) If M has no nonzero projective summand, the same is true for TrM ,
and P∨0 → P∨1 → TrM → 0 is a minimal projective presentation.
(v) If M has no nonzero projective summand then Tr TrM ∼= M .

Proof. Two different minimal projective presentations of M fit in a commu-
tative diagram

P1
f−−−→ P0

g−−−→ M −−−→ 0y y ∥∥∥
P ′1

f ′−−−→ P ′0
g′−−−→ M −−−→ 0

and the minimality ensures that the vertical maps are isomorphisms. Apply-
ing (−)∨, one sees that the two different constructions of TrM are isomorphic.

(ii) is clear.
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(iii) Straightforward since the direct sum of minimal projective presentations
of M and N gives a minimal projective presentation of M ⊕N .

(iv) Suppose Q is a non-zero projective summand of TrM . Then there is
a split epi P∨1 → Q whose composition with f∨ is zero. Thus there is a
split mono Q∨ → P1 whose composition with f is zero. Contradicts that
P1 → Ker(g) is a projective cover.

Suppose P∨1 → TrM is not a projective cover. Then there is a non-zero
summand Q of P∨1 with image zero in TrM . This gives a map Q→ Im(f∨).
Since Q is projective and P∨0 → Im(f∨) is onto, we get a map Q → P∨0
whose composition with f∨ is the inclusion of Q in P∨1 . Thus f composed
with the map P0 → Q∨ is the projection P1 → Q∨. Thus Ker(g) = Im(f) is
not contained in radP0. Contradicts that g : P0 →M is a projective cover.

Suppose that P∨0 → Im(f∨) is not a projective cover. Then there is a non-
zero summand Q of P∨0 whose composition with f∨ is zero. Then there is a
split epimorphism P0 → Q∨ whose composition with f is zero. This induces
a split epimorphism M → Q∨, contradicting the fact that M has no non-zero
projective summand.

(v). Tr TrM is the cokernel of the map P∨∨1 → P∨∨0 , that is, P1 → P0.

Proposition. Tr induces a bijection between isomorphism classes of indecom-
posable non-projective left A-modules and indecomposable non-projective
left Aop-modules.

Definition. Given modules M,N , we denote by Homproj(M,N) the set of
all maps M → N which can be factorized through a projective module
M → P → N .

Clearly Homproj(M,N) is a subspace of Hom(M,N), for example if θ factors
through P and θ′ factors throught P ′ then θ + θ′ factors through P ⊕ P ′.
Moreover Homproj is an ideal in the module category.

We define Hom(M,N) = Hom(M,N)/Homproj(M,N). These form the Hom
spaces in a category, the stable module category, denoted A-mod.

Theorem. The transpose defines inverse anti-equivalences

A-mod −→←− Aop-mod.

Proof. First we show that Tr defines a contravariant functor from A-mod
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to Aop-mod. Any map θ : M → M ′ can be lifted to a map of projective
presentations

P1
f−−−→ P0

g−−−→ M −−−→ 0

θ1

y θ0

y θ

y
P ′1

f ′−−−→ P ′0
g′−−−→ M ′ −−−→ 0

Applying ()∨ there is an induced map φ.

P ′∨0
f ′∨−−−→ P ′∨1

p′−−−→ TrM ′ −−−→ 0

θ∨0

y θ∨1

y φ

y
P∨0

f∨−−−→ P∨1
p−−−→ TrM −−−→ 0

The map φ depends on θ0 and θ1, which are not uniquely determined. We
show that any choices lead to the same element of Hom(TrM ′,TrM). For
this we may assume that θ = 0, and need to show that φ factors through a
projective.

Thus assume that θ is zero. Then g′θ0 = 0. Thus there is h : P0 → P ′1
with θ0 = f ′h. This gives h∨ : P ′∨1 → P∨0 with θ∨0 = h∨f ′∨. Now we have a
commutative diagram

P ′∨0
f ′∨−−−→ P ′∨1

p′−−−→ TrM ′ −−−→ 0

θ∨0

y f∨h∨

y 0

y
P∨0

f∨−−−→ P∨1
p−−−→ TrM −−−→ 0.

Taking the difference of the vertical maps, there is also a commutative dia-
gram

P ′∨0
f ′∨−−−→ P ′∨1

p′−−−→ TrM ′ −−−→ 0

0

y θ∨1 −f∨h∨
y φ

y
P∨0

f∨−−−→ P∨1
p−−−→ TrM −−−→ 0.

But then (θ∨1 − f∨h∨)f ′∨ = 0. Thus there is a map s : TrM ′ → P∨1 with
θ∨1 − f∨h∨ = sp′. It follows that psp′ = φp′, so since p′ is surjective, φ = ps,
so φ factors through a projective.

Thus a morphism g : M → M ′ gives a well-defined morphism Tr g = [φ] ∈
Hom(TrM ′,TrM). It is straightforward that this construction behaves well
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on compositions of morphsms, so that the transpose defines a contravariant
functor A-mod to Aop-mod.

Now clearly the transpose sends any projective module to 0, so it sends
any morphism factoring through a projective to 0, so it descends to a con-
travariant functor A-mod to Aop-mod. Now it is straightforward that it is an
antiequivalence.

2.2 Auslander-Reiten formula

Definition. We define A-mod as the category with Hom spaces

Hom(M,N) = Hom(M,N)/Hominj(M,N)

where Hominj(M,N) is the maps factoring through an injective module.

Lemma 1. Hom(M,N) ∼= Hom(DN,DM), so D gives an antiequivalence
between mod-A and A-mod.

Proof. Straightforward.

Definition. The Auslander-Reiten translate is τ = DTr and the inverse
construction is τ− = TrD.

By the results of the previous section we have inverse bijections

non-projective indec mods/iso
τ−→
←−
τ−

non-injective indec mods/iso

and inverse equivalences

A-mod
τ−→
←−
τ−

A-mod.

Applying D to the exact sequence defining TrM , we see that there is an
exact sequence

0→ τM → ν(P1)→ ν(P0)→ ν(M)→ 0.

Thus τ con be computed by taking a minimal projective presentation of M ,
applying the Nakayama functor (which turns each P [i] into I[i]) and taking
the kernel.
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Example. For the commutative square with source 1 and sink 4, the simple
S[2] has minimal projective presentation

P [4]→ P [2]→ S[2]→ 0

so we get
0→ τS[2]→ I[4]→ I[2]

so τS[2] ∼= P [3].

Lemma 2. If M is an A-module, then
(i) proj. dimM ≤ 1 ⇔ Hom(DA, τM) = 0 ⇔ there is no non-zero map from
an injective module to τM .
(ii) inj. dimM ≤ 1 ⇔ Hom(τ−M,A) = 0 ⇔ there is no non-zero map from
τ−M to a projective module.

Proof. (i) Recall that ν−(−) = Hom(DA,−), and that ν−(ν(P )) ∼= P . Thus
we get 0 → ν−(τM) → ν−(ν(P1)) → ν−(ν(P0)) exact, so 0 → ν−(τM) →
P1 → P0. Thus proj. dimM ≤ 1 iff P1 → P0 is injective iff ν−(τM) = 0 iff
Hom(DA, τM) = 0.

(ii) Dual.

Lemma 3. Given a right A-module M , a left A-module N , m ∈ M and
n ∈ N let fmn : M∨ → N be the map defined by fmn(α) = α(m)n. It is a
left A-module map. There is a natural transformation

θMN : DHom(M∨, N)→ Hom(M,DN), θMN(ξ) = (m 7→ (n 7→ ξ(fmn))).

Then θMN is an isomorphism for M projective. And in general the image of
θMN is Homproj(M,DN).

Proof. The first part is clear. Clearly θMN is well-defined. BothDHom(M∨, N)
and Hom(M,DN) define functors which are contravariant in M and N , and
it is straightforward that θMN is natural in M and N .

For M projective, the map is an isomorphism, since it is for M = A. Thus
given a map f : M → P with P projective, we get a commutative diagram

DHom(P∨, N) Hom(P,DN)

b

y a

y
DHom(M∨, N)

θMN−−−→ Hom(M,DN)
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where the top horizontal map is the natural isomorphism θPN and the vertical
maps are induced by f . Any map M → DN factoring through P is in the
image of a, so in Im(θMN).

Varying P , we get Homproj(M,DN) ⊆ Im(θMN).

Now take a basis of M∨. This defines a map M → P , where P = An. Then
P∨ → M∨ is onto. Thus Hom(M∨, N) → Hom(P∨, N) is 1-1. Thus b is
onto. Thus Im(θMN) = Im(a) ⊆ Homproj(M,DN).

Theorem. There are isomorphisms

Hom(τ−N,M) ∼= DExt1(M,N) ∼= Hom(N, τM).

Proof. Given a minimal projective presentation P1 → P0 → M → 0, write
Ω1M for the image of P1 → P0, so there is

0→ Ω1M → P0 →M → 0

and hence

0→ Hom(M,N)→ Hom(P0, N)→ Hom(Ω1M,N)→ Ext1(M,N)→ 0.

Also we have
0→M∨ → P∨0 → P∨1 → TrM → 0

so
0→ (TrM)∨ → P1 → P0

so
0→ (TrM)∨ → P1 → Ω1M → 0.

and hence

0→ Hom(Ω1M,N)→ Hom(P1, N)→ Hom((TrM)∨, N).
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Thus we have a commutative diagram with exact rows and columns,

0y
DExt1(M,N)y

DHom((TrM)∨, N) −−−→ DHom(P1, N) −−−→ DHom(Ω1M,N) −−−→ 0y ∥∥∥ y
0 −−−→ Hom(TrM,DN) −−−→ Hom(P∨1 , DN) −−−→ Hom(P∨0 , DN)y

Hom(TrM,DN)y
0

By the Snake Lemma we get an isomorphismDExt1(M,N)→ Hom(TrM,DN).

Now use Lemma 1 to rewrite this as Hom(N,DTrM), or use that Tr gives in-
verse anti-equivalences betweenA-mod andAop-mod to rewrite it as Hom(M,TrDN).

Corollary. If A is hereditary, we get

Hom(τ−N,M) ∼= DExt1(M,N) ∼= Hom(N, τM).

Proof. Use Lemma 2. We have Hom(τ−N,M) ∼= Hom(τ−N,M) if inj. dimN ≤
1, and Hom(N, τM) ∼= Hom(N, τM) if proj. dimM ≤ 1.

2.3 Auslander-Reiten sequences

Definitions. Given X, a map f : X → Y is a source map for X if it is left
minimal, not a split mono, and any map X → M which is not split mono
factors through f .

Given Z, a map g : Y → Z is a sink map for Z if it is right minimal, not a
split epi, and any map M → Z which is not split epi factors through g.

Remarks.
(i) If X has a source map, then X is indecomposable and the map is unique
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up to isomorphism, that is, if X → Y and X → Y ′ are source maps, then
there is an isomorphism Y → Y ′ giving a commutative triangle. Similarly
for sink maps.

(ii) I[i]→ I[i]/S[i] is a source map for I[i], and radP [i]→ P [i] is a sink map
for P [i].

Definition. By an Auslander-Reiten sequence or almost split sequence we
mean an exact sequence

0→ X
f−→ Y

g−→ Z → 0

where f is a source map for X and g is a sink map for Z.

If an AR sequence exists, it is determined up to isomorphism by either of the
end terms.

Lemma. If M is a (f.d.) A-B-bimodule, and soc(AM) and soc(MB) are
simple, then they are equal.

Proof. Since the socle is functorial, if θ ∈ EndA(M) then θ(soc(AM)) ⊆
soc(AM). Thus soc(AM) is a B-submodule of M . Since soc(MB) is simple,
it must be contained in any non-zero B-submodule of M , so soc(MB) ⊆
soc(AM). Dually we get the other incluson.

Theorem. Let Z be a non-projective indecomposable A-module, and let
X = τZ be the corresponding non-injective indecomposable module. (Or
equivalently let X be non-injective indecomposable and let Z = τ−X.) Then
there exists an Auslander-Reiten sequence

0→ X
f−→ Y

g−→ Z → 0.

Proof. Ext1(Z,X) is an End(X)-End(Z)-bimodule.

As a right End(Z) module it is isomorphic to DEnd(Z), so has simple socle S,
corresponding to the fact that End(Z) as a left End(Z)-module is a quotient
of End(Z), so has simple top, since Z is indecomposable.

As a left End(X) module it is isomorphic to DEnd(X), so has simple socle
T , corresponding to the fact that End(X) as a right End(X)-module is a
quotient of End(X), so has simple top, since X is indecomposable.

By the lemma, S = T . Let

ξ : 0→ X → Y → Z → 0
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be an exact sequence corresponding to a non-zero element of S.

(a) Since ξ 6= 0 the map f is not a split mono and g is not a split epi.

(b) Suppose M → Z not a split epi. The map Hom(Z,M) → End(Z) has
image contained in the radical of End(Z).

Thus the map Hom(Z,M) → End(Z) has image contained in the radical of
End(Z).

Thus the map DEnd(Z) → DHom(Z,M) kills the socle of DEnd(Z) as a
End(Z)-module.

Thus the map Ext1(Z,X) → Ext1(M,X) kills ξ. Thus the pullback of ξ by
M → Z splits.

Using a section of this pullback we get a map M → Y whose composition is
the original map M → Z.

(b’) By duality, if X →M is not a split mono, it factors through f .

(c) If g is not right minimal, then there is non-invertible α ∈ End(Y ) with
gα = g. Then g induces non-invertible β ∈ End(X) with αf = fβ. Now
βn = 0 for some n, so 0 = fβn = αnf , so αn = rg for some r : Z → Y . But
then g = gαn = grg, so since g is epi, gr = 1Z , contradicting that g is not
split epi. Thus g is right minimal.

(c’) Similarly f is left minimal.

Corollary. Every indecomposable module has a source map and a sink map.
(i) If X is indecomposable non-injective then the map X → Y in the AR
sequence starting at X is a source map, and if X = I[i] then I[i]→ I[i]/S[i]
is a source map.
(ii) If Z is indecomposable non-projective then the map Y → Z in the AR
sequence ending at Z is a sink map, and if Z = P [i] then radP [i]→ P [i] is
a sink map.

2.4 Irreducible maps

Definition. A map f : X → Y is irreducible if it is in rad(X, Y ) and for any
factorization f = φθ with θ : X →M and φ : M → Y , either θ is split mono
or φ is split epi.
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Remarks.
(i) Any irreducible map is mono or epi. Otherwise it factors through its
image.

(ii) The kernel/cokernel of an irreducible map is indecomposable (exercise).

(iii) Any source or sink map is irreducible. If X → Y is a source map for
X, then the irreducible maps X → Z are the compositions X → Y → Z
with Y → Z split epi. Any irreducible map factors this way. Conversely, it
suffices to show that if (

φ

φ′

)
: X → Z ⊕ Z ′

is irreducible, so is φ. For this, observe that if φ factors through M then
(
φ
φ′

)
factors through M ⊕ Z ′.

Dually, the if Y → Z is a sink map for Z, the irreducible maps X → Z are
the compositions X → Y → Z with X → Y split mono.

(iv) This is not the classical definition of an irreducible map. For example
if Y is indecomposable, then 0→ Y is irreducible, but it would not be with
the classical definition. Thus (iii) would be wrong.

Recall that we have defined rad(X, Y ) ⊆ Hom(X, Y ). If X is indecomposable
it is the set of maps which are not split monos. If Y is indecomposable it is
the set of maps which are not split epis. If X and Y are indecomposable it
is the set of non-isomorphisms.

Definitions. We define rad2(X, Y ) to be the set of all homomorphismsX → Y
which can be written as a composition

X
f−→M

g−→ Y

with f ∈ rad(X,M) and g ∈ rad(M,Y ). This is a subspace of rad(X, Y ).

If X, Y are indecomposable, we define irr(X, Y ) = rad(X, Y )/ rad2(X, Y ). It
is naturally aDY -DX-bimodule, whereDX is the division algebra End(X)/J(End(X)).

For X, Y indecomposable, f : X → Y is irreducible iff f ∈ rad(X, Y ) and
f 6∈ rad2(X, Y ). Thus there is an irreducible map X → Y iff irr(X, Y ) 6= 0.

Recall from the section on the Krull-Remak-Schmidt Theorem that the mul-
tiplicity of an indecomposable M as a direct summand of a module Y is

µM(Y ) =
dim t(M,Y )

dimDM

, t(M,Y ) =
Hom(M,Y )

rad(M,Y )
.
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Theorem. Let M be indecomposable.
(i) If f : X → Y is a source map, then dim irr(X,M) = µM(Y ). dimDM ,
(ii) If g : Y → Z is a sink map, then dim irr(M,Z) = µM(Y ). dimDM .
In particular, for given X and Z, there are only finitely many indecomposable
M with irr(X,M) or irr(M,Z) non-zero.

Proof. (ii) Since g is a sink map, either Ker g is zero, or Ker g → Y is a source
map. Either way it is in rad(Ker g, Y ). Since g is a radical homomorphism,
composition with g induces left exact sequences

0→ Hom(M,Ker g)→ Hom(M,Y )→ rad(M,Z)

and
0→ Hom(M,Ker g)→ rad(M,Y )→ rad2(M,Z)

and since g is a sink map, these are exact on the right. For example any map
θ ∈ rad2(M,Z) can be written as a sum θ =

∑
i ψiφi with φi ∈ rad(M,Xi)

and ψi ∈ rad(Xi, Z) and Xi indecomposable. But then ψi is not split epi, so
it factorizes as gχi for some χi ∈ Hom(Xi, Y ), and then θ = g(

∑
i χiφi), and∑

i χiφi ∈ rad(M,Y ). Thus

dim irr(M,Z) = dim[Hom(M,Y )/ rad(M,Y )] = dimDM .µM(Y ).

Corollary. If X is indecomposable, then(∑
M

dim irr(X,M)

dimDM

dimM

)
− dimX =

{
− dimS[i] (X ∼= I[i])

dim τ−X (X not injective)

where the sum is over all indecomposable modules up to isomorphism. More-
over if A = KQ/I then the same applies for dimension vectors.

2.5 Auslander-Reiten quiver

We now assume that K is algebraically closed. Otherwise we would have
to deal with valued quivers. Thus for M indecomposable, DM = K, so
dimDM = 1.

Definition. Given a f.d. algebra A, the Auslander-Reiten quiver of A has ver-
tices corresponding to the isomorphism classes of indecomposable A-modules,
and the number of arrows M → N is dim irr(M,N).
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It is often useful to indicate the AR translate τ by a dotted line joining Z
and τZ = DTrZ.

In general the AR quiver is not connected. It is finite iff the algebra has only
finitely many indecomposable modules, that is, it has finite representation
type.

Examples. For a Nakayama algebra, the irreducible maps between indecom-
posables are the monos X → Y with simple cokernel and the epis X → Y
with simple kernel.

Linear quiver with three vertices.
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K[t]/(t3).

Harada-Sai Lemma. A composition of 2n − 1 non-isomorphisms between
indecomposables of dimension ≤ n must be zero.

Proof. We show for m ≤ n that a composition of 2m − 1 non-isomorphisms
between indecomposables of dimension ≤ n has rank ≤ n−m.

If m = 1 this is clear. If m > 1, a composition of 2m − 1 non-isomorphisms
can be written as a composition

X
f−→ Y

g−→ Z
h−→ W

where f and h are compositions of 2m−1−1 non-isomorphisms. By induction
rank f, rankh ≤ n −m + 1. If either has strictly smaller rank, we’re done.
Thus suppose that rank f = rankh = rankhgf = n−m+ 1.

This implies that Ker f = Kerhgf and Imhgf = Imh. It follows that
Y = Kerhg ⊕ Im f and Z = Kerh ⊕ Im gf . For example if y ∈ Y then
hg(y) = hgf(x), so y = f(x) + (y − f(x)) ∈ Im f + Kerhg, and if y ∈
Im f ∩ Kerhg then y = f(x) and hgf(x) = 0, so x ∈ Kerhgf = Ker f , so
y = 0.

By indecomposability f is onto and h is 1-1. Thus dimY = dimZ = n−m+1
and g is an isomorphism. Contradiction.
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Theorem (Auslander). Assume that the algebra A is given by a connected
quiver and an admissible ideal. If C is a connected component of the AR
quiver, and there is a bound on the dimension of the indecomposable modules
in C, then C is finite and is the whole of the AR quiver of A.

Proof. Suppose M,N are indecomposable modules with Hom(M,N) 6= 0.
For i ≥ 0 we consider a chain of maps

M = M0
f1−→M1

f2−→M2
f3−→ . . .

fi−→Mi
gi−→ N

with the Mj indecomposable, fj irreducible and gifi . . . f1 6= 0. Such a chain
exists if i = 0. If gi is not an isomorphism, then it is not a split mono, so it
factors through the source map Mi → E. Then we get a chain of size i + 1
by taking Mi+1 to be one of the summands of E.

Suppose all indecomposables in C have dimension ≤ n.

If M is in C, then by Harada-Sai any such chain must have length i < 2n−1.
Thus the construction must terminate, with gi an isomorphism, for some
i < 2n− 1. Thus there is a chain of irreducible maps from M to N of length
< 2n − 1. Dually if N is in C.

Now choose some M in C. There is a projective P [i] with Hom(P [i],M) 6= 0,
so P [i] ∈ C. If i→ j is an arrow in Q there is a non-zero map P [j]→ P [i],
so if one is in C so is the other. Thus all projectives are in C. Thus C is the
whole AR quiver.

Now for any indecomposable there is a chain of irreducible maps of length
< 2n − 1 from a projective P [i]. Thus C is finite.

Corollary (First Brauer-Thrall Conjecture). If there is a bound on the di-
mensions of indecomposable A-modules, then A has only finitely many inde-
composable modules. (Finite representation type.)

Definition. An indecomposable module Z is directing if there is no cycle of
non-zero non-isomorphisms between indecomposable modules that includes
Z, so Z → Z1 → · · · → Zk → Z with k ≥ 0.

Proposition. Let Z be an indecomposable module. Suppose there is a bound
on the length of paths in the AR quiver ending at Z. Then Z is directing.

Proof. By induction on the bound. If zero, then Z is simple projective. But
then there is no non-zero non-isomorphism from an indecomposable module
to Z. Otherwise, decompose the sink map Y1 ⊕ · · · ⊕ Ym → Z. It there is a
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cycle, say Z → Z1 → · · · → Zk → Z, then the map Zk → Z factors through
the sink map, so for some i there are non-zero map Zk → Yi → Z. Now the
map Zk → Yi is either an isomorphism, or not. Either way we see that Yi is
in a cycle. Impossible by induction.

Definition. A module M is sincere if, considered as a representation of
the quiver Q, the vector space at each vertex i is non-zero. Equivalently
Hom(P [i],M) 6= 0 for all i. Equivalently Hom(M, I[i]) 6= 0 for all i.

Lemma. If M is sincere and directing, then proj. dimM ≤ 1, inj. dimM ≤ 1,
End(M) = K and Ext1(M,M) = 0.

Proof. If proj. dimM ≥ 2 then there is a non-zero map I[i]→ τM for some
i. But then one gets a cycle M → I[i]→ τM → Ei →M .

Similarly for injective dimension.

End(M) = K trivially.

Ext1(M,M) ∼= Hom(M, τM) = 0, for if M → τM is non-zero, either it is an
isomorphism, or not, and either way one gets a cycle.

Proposition. If M is directing and M ′ is indecomposable, of the same dimen-
sion vector, then M ∼= M ′.

Proof. Passing to A/(
∑
ei) for all vertices where M is zero, we may suppose

that M (and M ′) are sincere. Let 0 → P1 → P0 → M → 0 be a projective
presentation. Then for any module X we have

dim Hom(M,X)− dim Ext1(M,X) = dim Hom(P0, X)− dim Hom(P1, X).

This only depends on the dimension vector of X, so

dim Hom(M,M ′)−dim Ext1(M,M ′) = dim Hom(M,M)−dim Ext1(M,M) = 1

so Hom(M,M ′) 6= 0. Similarly Hom(M ′,M) 6= 0. Contradicts the directing
property.

2.6 Knitting construction

We work with an algebra A = KQ/I. Still K is algebraically closed.

Preparation. Compute the modules radP [i] and decompose into indecom-
posable summands. We need to the dimension vectors of the summands.
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Iterative construction. We suppose we have drawn a finite subquiver of the
AR quiver with no oriented cycles and the property that if an indecomposable
module X is in the subquiver, then so are all arrows ending at X, and suppose
we know the dimension vectors of the modules we have drawn. All modules
we have drawn are directing, so uniquely determined by their dimension
vectors.

We start with the empty subquiver.

If we have drawn all the summands of radP [i], but haven’t yet drawn P [i], we
can now draw P [i] and fill in the arrows ending at P [i] with their multiplic-
ities. In particular we can start by drawing the simple projective modules.

Suppose we have drawn an indecomposable module X. If we have drawn all
projectives P [i] such that X is a summand of radP [i], and if we have drawn
τ−U for all non-injective undecomposables U with an arrow U → X, then
we can be sure that we have drawn all arrows starting at X.

If we have drawn all arrows starting at X then

− dimX +
∑
M

dim irr(X,M) dimM =

{
− dimS[i] (X ∼= I[i])

dim τ−X (X not injective)

so we know whether or not X is injective by the sign of the left hand side.
If it is not injective, and we haven’t yet drawn τ−X, we can now do so, and
draw dim irr(M, τ−X) = dim irr(X,M) arrows from M to X, for all M .

Repeat.

Several possibilities. (a) Get stuck, because either there is no simple projec-
tive, or we have written down some summands of radP [i], for some projective
P , but can’t write down all summands, so can’t write down P [i].

(b) Terminate after a finite number of steps. By Auslander’s Theorem we
have the whole AR quiver.

(c) Go on forever. In this case we have constructed one or more connected
components of the AR quiver, called ‘preprojective’ components.

Examples.
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Quiver ◦ ← ◦ → ◦.

E6:
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4-subspace,

Kronecker quiver,

Kronecker quiver with another vertex 3, such that the radical of P [i] never
appears.

Maybe one gets stuck. For example if some projective has decomposable
radical:
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Dually construct preinjective components starting with simple injective.

2.7 Covering theory via graded modules

The knitting procedure fails for many algebras. But a tool called ‘covering
theory’, due to Gabriel (1981), can often be used to make it work. By Gordon
and Green (1982) it is essentially equivalent to study graded modules.

Recall that A is a Z-graded algebra if

A =
⊕
n∈Z

An, An.Am ⊆ An+m.

It follows that 1 ∈ A0. We assume that A is f.d.. Thus only finitely many
An are nonzero.

Recall that a Z-graded A-module is an A-module

M =
⊕
n∈Z

Mn, An.Mm ⊆Mn+m.

We only consider f.d. graded modules, and write A-grmod for the category
of f.d. Z-graded A-modules, with

HomA-grmod(M,N) = {θ ∈ HomA(M,N) | θ(Mn) ⊆ Nn for all n ∈ Z}.
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Given an algebra A such as

we can grade by setting deg a = deg c = 1 and deg b = 0 , and letting an
arbitrary path have degree equal to the sum of the degrees of the arrows it
involves (since with this choice the relations are homogeneous). Last semester
we have seen that graded modules for an algebra correspond to modules for
a suitable catalgebra Â (an algebra which doesn’t necessarily have a 1, but
does have enough indempotents). In this example, the catalgebra is given by
the quiver

with the corresponding relations. Given a graded A-module M , the vector
space at vertex in is eiMn. So Mn is the direct sum of the vector spaces at
vertices with subscript n. In particular, if we are only interested in graded
modules living in degrees −N ≤ n ≤ 0, then we deal with the truncated
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catalgebra

This is now a f.d. algebra. Perhaps we can use knitting with it. We show
how it can be used to understand modules for the original algebra A.

Theorem 1. A is local iff A0 is local.

Proof. Suppose A is local. If I is a proper left ideal in A0 then AI ⊆ J(A)
since it is a left ideal in A, and if a ∈ A and i ∈ I, then i is not invertible in
A0, so not in A, so ai is not invertible, so it is in J(A). Thus I ⊆ J(A)∩A0.
Thus J(A) ∩ A0 is the unique maximal left ideal in A0.

Now suppose that A0 is local.

Let I =
∑

n6=0AnA−n ⊆ A0.

If a ∈ An and b ∈ A−n with n 6= 0, then a is nilpotent, so not invertible, so
ab is not invertible in A, so it is not invertible in A0, so ab ∈ J(A0). Thus
I ⊆ J(A0).

Thus I is nilpotent. Say IN = 0.

Let L be the ideal in A generated by all An (n 6= 0). Clearly L = I⊕
⊕

n6=0 An.

It suffices to show that L is nilpotent, for then L ⊆ J(A), so that A/J(A) is
a quotient of A/L ∼= A0/I, which is local.

Suppose that A lives in d different degrees.

It suffices to show that any product `1`2 . . . `dN of homogeneous elements of
L is zero.

Suppose not. Let di be the degree of `1`2 . . . `i.
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We have dN + 1 numbers d0, d1, . . . , ddN taking at most d different values, so
some value must occur at least N + 1 times. Say

di1 = di2 = · · · = diN+1

with i1 < i2 < · · · < iN+1. Then we can write the product as

`1 . . . `i1(`i1+1 . . . `i2)(`i2+1 . . . `i3) . . . (`iN+1 . . . `iN+1
)`iN+1+1 . . . `dN

But each of the bracketed terms has degree 0, so is in I, so their product is
zero.

Definition. Given a graded module M and i ∈ Z we write M(i) for the
module with shifted grading M(i)n = Mi+n. There is a forgetful functor F
from A-grmod to A-mod which forgets the grading.

Lemma 1. If M,N are graded A-modules, then HomA(FM,FN) can be
graded,

HomA(FM,FN) =
⊕
n∈Z

HomA-grmod(M,N(n)).

In this way

EndA(FM) =
⊕
n∈Z

HomA-grmod(M,M(n))

becomes a graded algebra.

Proof. Given a homomorphism θ : FM → FN , we get linear maps θn : M →
N defined by

θn(m) =
∑
i∈Z

θ(mi)i+n

where a subscript k applied to an element of a graded module picks out the
degree k component of the element.

Now if a ∈ A is homogeneous of degree d, then (am)i = a.mi−d, so

θn(am) =
∑
i

θ((am)i)i+n =
∑
i

θ(a.mi−d)i+n =
∑
i

(aθ(mi−d))i+n

=
∑
i

a.θ(mi−d)i+n−d =
∑
j

a.θ(mj)j+n = aθn(m).

Thus θn ∈ HomA-grmod(M,N(n)). Clearly θ is the sum of the θn. The rest is
clear.
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Corollary. (i) A graded module M is indecomposable iff the ungraded module
FM is indecomposable.

(ii) If M and N are indecomposable graded modules with FM ∼= FN then
M is isomorphic to N(i) for some i.

Proof. (i) By Theorem 1, EndA(FM) is local iff its degree zero part is local.
This is EndA(FM)0 = EndA-grmod(M). Now the ungraded module FM is in-
decomposable iff its endomorphism algebra EndA(FM) is local. The graded
module M is indecomposable iff its endomorphism algebra EndA-grmod(M)
has no non-trivial idempotents, and since it is f.d., it is equivalent that it is
local.

(ii) Suppose θ : FM → FN is an isomorphism. Then θ−1θ = 1FM , so
(θ−1θ)0 = 1M , so

∑
i(θ
−1)−iθi = 1M . Since End(M) is local, some (θ−1)iθi is

invertible, so θi : M → N(i) is a split mono of graded modules, and hence
also an isomorphism.

Setup. Let A = KQ/I and grade it as above, assuming the relations are
homogeneous. We suppose that A lives in non-negative degrees, so since it
is f.d., it lives in degrees [0, d] for some d.

Recall that graded A-modules correspond to modules for a catalgebra Â.
Given n ≤ m, graded modules living in degrees [n,m] = {i ∈ Z : n ≤ i ≤ m]
correspond to modules for a truncation of the catalgebra which is an actual
algebra. It is

Ã =



A0 0 · · · 0 0
A1 A0 · · · 0 0
A2 A1 · · · 0 0
...

...
. . .

...
...

Am−n−1 Am−n−2 · · · A0 0
Am−n Am−n−1 · · · A1 A0


We write F also for the functor from Ã-mod to A-mod.

Theorem 2. Suppose A lives in degrees [0, d] with d ≥ 0 and Ã is the
truncation corresponding to degrees [n,m]. If ξ : 0 → X → Y → Z → 0 is
an AR sequence of Ã-modules, and Z lives in degrees [n + d,m − 2d], then
F (ξ) is an AR sequence of A-modules.

Sketch of proof. The trivial idempotents ei ∈ A are homogeneous of degree
0, so the module PA[i] = Aei is graded, and lives in degrees [0, d]. Thus
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the module PA[i](j) lives in degrees [j, j + d]. Thus if j ∈ [n,m − d] then
PA[i](j) corresponds to an Ã-module. In fact it corresponds to PÃ[ij]. Thus
F (PÃ[ij]) ∼= PA[i].

Similarly, if j ∈ [n+ d,m] then F (IÃ[ij] ∼= IA[i].

Take a minimal projective presentation

P1 → P0 → Z → 0.

Now P0 only involves projective covers of simples in degrees [n+ d,m− 2d],
so P0 lives in degrees [n+ d,m− d]. Then P1 only involves projective covers
of simples in degrees [n + d,m − d]. It follows that F (Pi) are projective
A-modules, and that

F (P1)→ F (P0)→ F (Z)→ 0

is a minimal projective presentation of F (Z).

Now τÃZ is computed using the exact sequence

0→ τÃZ → νÃ(P1)→ νÃ(P0).

Since the modules νÃ(Pi) only involve injective envelopes of simples in degrees
[n+ d,m− d], F (νÃ(Pi)) is injective, and isomorphic to νA(F (Pi)). Thus

0→ F (τÃZ)→ F (νÃ(P1))→ F (νÃ(P0)),

is identified with the sequence

0→ τAF (Z)→ νA(F (P1))→ νA(F (P0)).

Thus τAF (Z) ∼= F (τÃZ) ∼= F (X).

Now there is a homomorphism EndÃ(Z)→ EndA(F (Z)) whose image is the
degree 0 part. It induces an isomorphism on tops.

This induces a map EndÃ(Z)→ EndA(F (Z)) giving an isomorphism on tops.

This gives DEndA(F (Z))→ DEndÃ(Z) giving an isomorphism on socles.

This gives a map Ext1
A(F (Z), F (X)) → Ext1

Ã
(Z,X) giving an isomorphism

on socles.

Now AR sequences are defined by elements of the socle, so the forgetful
functor sends an AR sequence to an AR sequence.
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Construction. Take a range of degrees [−N, 0] withN � 0, which we consider
to be finite, but arbitrarily large.

Now knit. If, eventually the knitted modules live in degrees ≤ −2d, then the
subsequent AR sequences are sent by the forgetful functor to AR sequences
of A-modules.

If also the knitted modules are eventually all shifts of finitely many A-
modules, then they give a finite connected component of the AR quiver of
A. By Auslander’s Theorem it is the whole AR quiver.

Examples.

Observe that the modules along the two vertices arrows correspond, with the
modules on the right hand arrow being the shifts of the modules on the left
hand arrow one place up the ladder. Moreover the modules to the right of
each arrow also correspond. Thus you can be sure that all further knitting
will follow the same pattern.
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Now take the part of the AR quiver between the two vertices arrows. You can
be sure that the forgetful functor sends it to a finite connected component of
the AR quiver of A. Thus it is the whole of the AR quiver of A. You need
to identify the two vertical arrows, giving a Möbius band.

Another example: a Nakayama algebra (so we can compute its AR quiver
anyway).

We grade it with deg a = 1 and the other arrows of degree 0. Algebra Ã is of
the following form, where for simplicity we label the vertices 10, 20, 30, 1−1, 2−1, 3−1,−2 , . . .
as 1, 2, 3, 4, 5, 6, 7, . . . .

→ 9
c−→ 8

b−→ 7
a−→ 6

c−→ 5
b−→ 4

a−→ 3
c−→ 2

b−→ 1

Knitting gives the following.

Again we observe that the pattern repeats, so the AR quiver of A is the part
between the two vertical arrows, with the arrows identified. The cross means
that at that place it is not an AR sequence (since 654 is projective and 543
is injective).

Another example: Q with one vertex and loops p, q with relations p2 =
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qpq, q2 = pqp, p3 = q3 = 0. There is no non-trivial grading, so can’t get
started.

In the case when this process works, every module is gradeable. In general
that is not true.

For example the quiver with arrows from 1 to 2 and 3, and from 2 to 3.
Grade it with the arrow from 1 to 3 of degree 1 and the others of degree 0.
Then the module which is K at each vertex, identity for each arrow is not
gradeable.

Theorem 3. If the field K has characteristic zero, and A is graded, then any
A-module M with Ext1(M,M) = 0 is gradeable.

Proof. The result is possibly folklore. This proof comes from Keller, Murfet
and van den Bergh, On two examples by Iyama and Yoshino.

Let d : A→ A be the map defined by d(a) = deg(a)a for a homogeneous. It
is a derivation since d(ab) = deg(ab)ab = (deg(a)+deg(b))ab = ad(b)+d(a)b.
It is called the Euler derivation.

Let E = M⊕M as a vector space, with A-module action given by a(m,m′) =
(am, d(a)m + am′). This is an A-module structure and there is an exact
sequence

0→M
( 0

1 )
−−→ E

( 10 )−−→M → 0

By assumption this is split, so there is a map M → E of the form m 7→
(m,∇(m)). Moreover the map ∇ : M →M satisfies

∇(am) = d(a)m+ a∇(m)

so it is a connection on M with respect to d. Since M is f.d.,

M =
⊕
λ∈K

Mλ

where Mλ is the λ-generalised eigenspace for ∇. Now for any λ ∈ K and a
homogeneous we have

(∇− λ− deg(a))N(am) = a(∇− λ)N(m)

for all N ≥ 1, so a(Mλ) ⊆ Mλ+deg(a). Thus if we let T be a set of coset
representatives for Z as a subgroup of K under addition, and set

Mn =
⊕
λ∈T+n

Mλ

then M =
⊕

n∈ZMn is a graded module.
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2.8 An example of a self-injective algebra of finite rep-
resentation type

Proposition. If P is an indecomposable projective-injective A-module which
is not simple, then there is an AR-sequence

0→ radP
f−→ P ⊕ radP/ socP

g−→ P/ socP → 0

where f(x) = (x, x) and g(x, y) = x− y.

Proof. Clearly socP ⊆ radP . Now radP has simple socle, so is indecom-
posable and P/ socP has simple top, so is indecomposable. The sequence is
clearly exact.

We show that any map θ : radP → M which is not split mono factors
through f . We may assume that M is indecomposable. If θ is not mono, the
map factors through radP/ socP , so through f . If θ is mono, then since P
is injective, the inclusion radP → P lifts to a map φ : M → P . If φ is not
epi, then it maps to radP and is a section for θ, contradicting that θ is not
a split mono. Thus φ is epi, so since P is projective, it is a split epi, so an
isomorphism. Then using φ−1 we see that θ factors through f .

By symmetry any map P/ socP →M factors through g.

Now g is right minimal by the argument of (c) in the proof of the theorem
in section 2.3. Dually f is left minimal. Thus f is a source map and g a sink
map. Thus the sequence is an AR sequence.

Lemma. If P is a projective-injective summand of A, S = socP and I = SA,
then if

0→ X → Y → Z → 0

is any AR sequence which is not of the form above for some summand of P ,
then X, Y, Z are killed by I, so this is also an AR sequence of A/I-modules.

Proof. Let P ′ be an indecomposable summand of P . It can’t occur as X or Z
since it is projective-injective. If it occurs are Y , then there is an irreducible
map X → P ′. Thus X is a summand of radP ′. Thus X ∼= radP ′. Thus the
sequence is as in the last proposition.
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Example. Consider the algebra with quiver

and relations bacb = 0, bc = λbac and a2 = cb for λ ∈ K. It is a special case
of a penny-farthing.

Then ba2 = bcb = λbacb = 0, and hence also a4 = cbcb = 0. Also a2c = cbc =
λcbac = λa3c. Then a4 = 0 ⇒ a3c = 0 ⇒ a2c = 0. Thus also cbc = 0.

If K has characteristic not 2, one can change generators to get λ = 0. If K
has characteristic 2 this is not possible.

If λ 6= 0 there is no suitable grading.

The projectives are

They have dimensions 6 and 4. Thus the algebra has dimension 10. Ob-
serve that the projectives have simples socles, and both simples occur. Thus
the algebra embeds in the direct sum of the two injectives, which also has
dimension 10. Thus the algebra is self-injective.

We pass to A/I where I = socA (already an ideal), so add the relations
a3 = cba = acb = 0 and bac = 0, so bc = 0. According to the lemma of section
1.5, we only lose the two projective-injeective modules. The new algebra has
a grading with all arrows of degree 1, so its covering and indecomposable
projectives as follows (where we show the indecomposable summands of their
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radicals).

Knitting gives
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Then we insert the original projective-injectives to get the AR quiver of A.
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3 Homological topics

3.1 Faithfully balanced modules

See the following papers, and they papers they refer to.
T. Kato, Rings of U-dominant dimension ≥ 1, Tohoku Math. J. 1969.
B. Ma and J. Sauter, On faithfully balanced modules, F-cotilting and F-
Auslander algebras, arXiv:1901.07855
Müller, The classification of algebras by dominant dimension, Canad. J.
Math 1968.
C. M. Ringel, Artin algebras of dominant dimension at least 2, manuscript
2007, available from his Bielefeld homepage.

Definition. Let M be an A-module, and let B = EndA(M). Then M can
be considered as a B-module, and there is a natural map A → EndB(M).
Clearly M is faithful iff this map is injective.

We say that M is a balanced A-module or that M has the double centralizer
property if this map is onto, and that M is faithfully balanced (f.b.) if this
map is an isomorphism.

Clearly M is a f.b. A-module iff DM is a f.b. Aop-module.

Definition. Given a module M , gen(M) denotes the module class consisting
of quotients of direct sums of copies of M and cogen(M) the module class of
submodules of a direct sum of copies of M .

We say M is a generator if gen(M) = A-mod, or equivalently A ∈ add(M).
We say M is a cogenerator if cogen(M) = A-mod, or equivalently DA ∈
add(M).

Proposition/Definition 1. If M is an A-module and n ≥ 0 then genn(M)
is the module class consisting of the X satisfying the following equivalent
conditions
(a) There is an exact sequence Mn → Mn−1 → · · · → M0 → X → 0 with
Mi ∈ addM such that the sequence

HomA(M,Mn−1)→ · · · → HomA(M,M0)→ HomA(M,X)→ 0

is exact (note that this is automatic if M is projective).
(b) The natural map HomA(M,X) ⊗B M → X is surjective (n = 0) or an
isomorphism (n > 0) and TorBi (HomA(M,X),M) = 0 for 0 < i < n.
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Clearly add(M) ⊆ . . . gen2(M) ⊆ gen1(M) ⊆ gen0(M) = gen(M).

Proof. Suppose (a). Then there is an exact sequence Mn → Mn−1 → · · · →
M0 → X → 0 with

HomA(M,Mn−1)→ · · · → HomA(M,M0)→ HomA(M,X)→ 0

exact.

We first show that by changing Mn, if necessary, we may assume that the
sequence

HomA(M,Mn)→ HomA(M,Mn−1)→ · · · → HomA(M,M0)→ HomA(M,X)→ 0

is exact.

We are given an exact sequence

Mn
θ−→Mn−1

φ−→Mn−2

where we define M−1 = X and M−2 = 0 if necessary. Thus θ factorizes as a
composition

Mn
ψ−→ kerφ

i−→Mn−1

where ψ is onto and i is the inclusion. Let ψ′ : M ′
n → kerφ be an add(M)-

approximation of kerφ. It must be onto since ψ factors through ψ′. Replacing
θ by the composition θ′ = iψ′, the sequence M ′

n → Mn−1 → Mn−2 is exact.
By the approximation property, we have a surjection

HomA(M,M ′
n)� HomA(M, kerψ) ∼= ker (HomA(M,Mn−1)→ HomA(M,Mn−2)) .

so the sequence HomA(M,M ′
n) → HomA(M,Mn−1) → HomA(M,Mn−2) is

exact.

SinceMi ∈ add(M), we have HomA(M,M i) ∈ add(HomA(M,M)) = add(BB),
so the exact sequence

HomA(M,Mn)→ HomA(M,Mn−1)→ · · · → HomA(M,M0)→ HomA(M,X)→ 0

is part of a projective resolution of HomA(M,X) as a right B-module. We
can use it to compute TorBi (HomA(M,X),M) for i < n as the homology of
the complex

Hom(M,Mn)⊗B M → · · · → Hom(M,M0)⊗B M.
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Now for M ′ ∈ addM , the natural map Hom(M,M ′) ⊗B M → M ′ is an
isomorphism, so this complex is identified with

Mn → · · · →M0

This is exact at Mi for 0 < i < n, and the homology at M0 is isomorphic to
X. Hence (b) holds

Conversely if (b) holds, take the start of a projective resolution of HomA(M,X)
as a right B-module, say

Pn → · · · → P0 → HomA(M,X)→ 0

Applying −⊗B M gives a complex, which by the hypotheses is exact:

Mn → · · · →M0 → X → 0,

where Mi = Pi ⊗B M ∈ addM . Applying HomA(M,−) to this, gives a
complex

HomA(M,Mn)→ · · · → HomA(M,M0)→ HomA(M,X)→ 0.

Identifying HomA(M,Mi) = HomA(M,Pi ⊗B M) ∼= Pi, we see that this is
the projective resolution we started with, so it is exact. Thus (a) holds.

Proposition/Definition 2. If M is an A-module and n ≥ 0 then cogenn(M)
is the module class consisting of the X satisfying the following equivalent
conditions
(a’) There is an exact sequence 0→ X →M0 → · · · →Mn withM i ∈ addM
such that the sequence

Hom(Mn−1,M)→ · · · → Hom(M0,M)→ Hom(X,M)→ 0

is exact (this is automatic if M is injective).
(b’) The natural map X → HomB(HomA(X,M),M) is a monomorphism
(n = 0) or an isomorphism (n > 0) and ExtiB(HomA(X,M),M) = 0 for
0 < i < n.

Clearly add(M) ⊆ . . . cogen2(M) ⊆ cogen1(M) ⊆ cogen0(M) = cogen(M).

The proof is dual.

Corollary 1.
(1) If M is an A-module, then M is f.b. iff A ∈ cogen1(M) iff DA ∈ gen1(M).
(2) Any generator or cogenerator is f.b.
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Proof (1) Apply Prop/Def 2 with X = A and n = 1. Now M is f.b. iff DM
is f.b. iff Aop ∈ cogen1(AopDM) iff DA ∈ gen1(AM).

(2) If M is a generator, then A ∈ add(M) ⊆ cogen1(M). If M is a cogener-
ator, then DM is a generator, so f.b., hence so is M .

Definition. By an f.b. pair we mean a pair (A,M) consisting of an algebra
and a f.b. A-module.

Given an f.b. pair, we construct a new f.b. pair (B,M), its endomorphism
correspondent, where B = EndA(M) and M is considered in the natural way
as a B-module.

Repeating the construction twice, one recovers the original pair.

We say that f.b. pairs (A,M) and (A′,M ′) are equivalent if there is an equiv-
alence A-mod → A′-mod sending add(M) to add(M ′). One can show that
equivalent pairs have equivalent endomorphism correspondents.

Corollary 2. If (A,M) and (B,M) are f.b. pairs which are endomorphism
correspondents, then HomA(−,M) and HomB(−,M) give inverse antiequiv-
alences between cogen1(AM) and cogen1(BM).

Proof. In view of Prop/Def 2 (b’) and the symmetrical role of A and B, it
suffices to show that if X ∈ cogen1(AM), then HomA(X,M) ∈ cogen1(BM).
Take a free presentation of AX, say Am → An → X → 0. Applying
HomA(−,M) gives an exact sequence

0→ HomA(X,M)→Mn →Mm.

Applying HomB(−,M) to this gives

Am → An → HomB(HomA(X,M),M)→ 0

which is isomorphic to the original exact sequence, so exact. Thus HomA(X,M) ∈
cogen1(BM).

Remark. Composing with duality, we get that HomA(M,−) and M ⊗Bop −
give inverse equivalences between gen1(AM) and cogen1(BopDM).

Example. Let A be the path algebra of the linear quiver Q = 1 → 2 → 3.
We display its AR quiver below. Let AM be the direct sum of the circled
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indecomposables.

The endomorphism algebra of AM is

Considering M as a B-module, means to consider it as a representation of this
quiver. The vector space at each vertex is the corresponding indecomposable
A-module. In this example, the indecomposable A-modules are at most one-
dimensional at each vertex of Q. In the following diagram we write i for
the natural basis element at vertex i of Q. The arrows in the quiver for B
correspond to homomorphisms of the indecomposable A-modules, and act
on the basis elements as indicated below.

Thus

Observe that AM has all of the projective A-modules as summands, but not
all injectives, so AM is a generator but not a cogenerator. On the other hand
all of the summands of BM are projective, but one summand is not injective.
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Proposition. Let (A,M) and (B,M) be f.b. pairs which are endomorphism
correspondents.
(a) AM is a generator iff BM is projective.
(b) AM is a cogenerator iff BM is injective.
(c) A ∈ cogenn(AM) iff ExtiB(M,M) = 0 for 0 < i < n.

Proof. (a) If AM is a generator, thenA ∈ add(AM), so BM ∼= HomA(A,M) ∈
add(HomA(M,M)) = add(B), so BM is projective.

Conversely if BM is projective, then BM ∈ add(B), so A ∼= HomB(M,M) ∈
add(HomB(B,M)) = add(AM).

(b) Apply (a) to DM .

(c) Prop/Def 2 with X = A.

Definition. Given an algebra B, we take the minimal injective resolution

0→ B → I0 → I1 → . . .

of the module BB. We say that B has dominant dimension ≥ n if I0, . . . , In−1

are projective.

Recall that a QF-3 algebra is an algebra with a faithful projective-injective
module. Thus A is QF-3 iff dom. dimA ≥ 1. The faithful projective-injective
module P is unique, up to multiplicities, since it is the direct sum of all
indecomposable projective-injective modules. Moreover add(P ) = PA ∩ IA,
the module class of all projective-injective modules.

Theorem (Morita-Tachikawa correspondence). There is a 1:1 correspon-
dence between equivalence classes of pairs (A,M) where AM is a generator-
cogenerator and Morita equivalence classes of algebras B with dom. dimB ≥
2.

It is given by endomorphism correspondence between (A,M) and (B,M),
where BM is the faithful projective-injective module, which is unique up to
multiplicities.

In particular B = EndA(M).

Proof. By the proposition, AM is a generator-cogenerator iff BM is projective-
injective. Now BM is also f.b., so B ∈ cogen1(BM), so dom. dimB ≥ 2.

Conversely if dom. dimB ≥ 2, and M is its faithful projective-injective mod-
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ule, then there is an exact sequence 0→ B →M0 →M1 with M i ∈ add(M).
Since M is injective, Hom(−,M) is exact on this. Thus B ∈ cogen1(BM), so

BM is f.b.. Let (A,M) be the endomorphism correspondent. Then AM is a
generator-cogenerator.

Definition Let n ≥ 1. A module AM is an n-cluster tilting object if
(i) ExtiA(M,M) = 0 for 0 < i < n
(ii) ExtiA(U,M) = 0 for 0 < i < n implies U ∈ addM
(iii) ExtiA(M,U) = 0 for 0 < i < n implies U ∈ addM

Clearly (ii) implies A ∈ addM and (iii) implies DA ∈ addM , so any n-cto
is a generator-cogenerator.

Example. For the algebra with quiver

0→ 1→ 2→ · · · → n

with all paths of length 2 zero, the module S[0] has projective resolution

0→ P [n]→ P [n− 1]→ · · · → P [1]→ P [0]→ S[0]→ 0

so dim Exti(S[0], S[j]) = δij. It follows that

M = S[0]⊕ P [0]⊕ · · · ⊕ P [n− 1]⊕ P [n] ∼= I[0]⊕ I[1]⊕ · · · ⊕ I[n]⊕ S[n]

is an n-cto. It’s endomorphism algebra B is the path algebra of the quiver

n→ · · · → 1→ 0→ ∗

with all paths of length 2 zero. It has global dimension n+1. The projectives
P [n], . . . , P [0] are injective, and P [∗] has injective resolution

0→ P [∗]→ I[∗]→ I[0]→ · · · → I[n− 1]→ I[n]→ 0.

Now I[∗] ∼= P [0], I[0] ∼= P [1], . . . , I[n − 1] ∼= P [n] and I[n] ∼= S[n] is not
projective, so dom. dimB = n+ 1.

Theorem (Iyama, 2007). There is a 1:1 correspondence between equivalence
classes of pairs (A,M) where AM is an n-cto and Morita equivalence classes
of algebras B with gl. dimB ≤ n+ 1 ≤ dom. dimB.

As before, it is given by endomorphism correspondence between (A, AM) and
(B, BM), so B = EndA(M).

Proof. We are in the setting of Morita-Tachikawa correspondence.
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Now ExtiA(M,M) = 0 for 1 < i < n corresponds to B ∈ cogenn(BM), and
since BM is the faithful projective-injective, this corresponds to dom. dimB ≥
n+ 1.

Suppose gl. dimB ≤ n+ 1.

We show that if ExtiA(U,M) = 0 for 0 < i < n then U ∈ addM . Take the
start of a projective resolution of U , say

Pn → · · · → P0 → U → 0.

Applying HomA(−,M) gives a complex

0→ HomA(U,M)→ HomA(P0,M)→ · · · → HomA(Pn,M)

which is exact because the Exts vanish. Since BM is injective, applying
HomB(−,M) gives an exact sequence

HomB(HomA(Pn,M),M)→ · · · → HomB(HomA(P0,M),M)→ HomB(HomA(U,M),M)→ 0.

Now the maps Pi → HomB(HomA(Pi,M),M) are isomorphisms since Pi ∈
addM . Thus the map U → HomB(HomA(U,M),M) is an iso (so U ∈
cogen1(AM)). Also HomA(Pi,M) ∈ add(HomA(A,M)) = add(BM). Thus,
since gl. dimB ≤ n+1, theB-module HomA(U,M) must be projective, so it is
in add(BB), and then U ∼= HomB(HomA(U,M),M) ∈ add(HomB(B,M)) =
add(AM).

Next we show that if ExtiA(M,U) = 0 for 0 < i < n then U ∈ addM . Take
the start of an injective resolution of U , say

0→ U → I0 → · · · → In.

Applying HomA(M,−) gives a complex

0→ HomA(M,U)→ HomA(M, I0)→ · · · → HomA(M, In)

which is exact because the Exts vanish. Since BM is projective, applying
−⊗B M gives an exact sequence

0→ HomA(M,U)⊗BM → HomA(M, I0)⊗BM → · · · → HomA(M, In)⊗BM.

Now the maps I i → HomA(M, I i)⊗BM are isomorphisms since I i ∈ addM .
Thus the map U → HomA(M,U) ⊗B M is an iso. Also HomA(M, I i) ∈
add(HomA(M,M)) = add(BB). Thus, since gl. dimB ≤ n + 1, the right
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B-module HomA(M,U) must be projective, so it is in add(BB), and then
U ∼= HomA(M,U)⊗B M ∈ add(B ⊗B M) = add(AM).

Now suppose that M is an n-cto. Given a B-module Z, choose a projective
presentation

P1
f−→ P0 → Z → 0.

Applying HomB(−,M) gives an exact sequence

0→ HomB(Z,M)→ HomB(P0,M)
g−→ HomB(P1,M)→ Coker(g)→ 0.

Let C0 = Coker(g). Applying HomA(−,M) we get a commutative diagram
with bottom row exact

P1
f−−−→ P0y y

0 −−−→ HomA(C0,M) −−−→ HomA(HomB(P1,M),M) −−−→ HomA(HomB(P0,M),M)

The two vertical maps are isomorphisms, so Ker(f) ∼= HomA(C0,M).

Now since M is a cogenerator, by repeatedly taking left M -approximations
we can get an exact sequence

0→ C0 →M0 → · · · →Mn−2

such that the sequence

HomA(Mn−2,M)→ · · · → HomA(M0,M)→ HomA(C0,M)→ 0

is exact. Let Ci be the cosyzygies for this sequence, so

0→ Ci →M i → Ci+1 → 0.

Then

Hom(M i,M)� Hom(Ci,M)→ Ext1(Ci+1,M)→ Ext1(M i,M) = 0→ . . . ,

so by dimension shifting

Extn−1(Cn−1,M) ∼= Extn−2(Cn−1,M) ∼= . . . ∼= Ext1(C1,M) = 0

and similarly Exti(Cn−1,M) = 0 for 0 < i < n. Thus Cn−1 ∈ addM . Thus
Z has projective resolution

0→ HomA(Cn−1,M)→ HomA(Mn−2,M)→ · · · → HomA(M0,M)→ P1 → P0 → Z → 0.
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Thus proj. dimZ ≤ n+ 1. Thus gl. dimB ≤ n+ 1.

Observe that M is a 1-cto iff add(M) = A-mod. This is only possible if A
has finite representation type, and then AM is unique up to multiplicities.
Thus we recover.

Theorem (Auslander, 1974). There is a 1-1 correspondence between algebras
A of finite representation type up to Morita equivalence and algebras B with
gl. dimB ≤ 2 ≤ dom. dimB up to Morita equivalence.

The correspondence sends A to B = EndA(M) where AM is the direct sum
of all the indecomposable A-modules, and it sends B to A = EndB(M) where

BM is the faithful projective-injective B-module.

The algebra B is called the Auslander algebra of A.

Example. We can check gl. dimB = 2 = dom. dimB for the Auslander
algebra of the linear quiver with three vertices.
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3.2 Homological conjectures for f.d. algebras

Lemma. If inj. dim AA = n, any A-module has proj. dimM ≤ n or ∞.

For example, every non-projective module for a self-injective algebra has
infinite projective dimension.

Proof. Say proj. dimM = i < ∞. There is some N with Exti(M,N) 6= 0.
Choose 0 → L → P → N → 0 with P projective. The long exact sequence
for Hom(M,−) gives

· · · → Exti(M,P )→ Exti(M,N)→ Exti+1(M,L)→ . . .

Now Exti+1(M,L) = 0, so Exti(M,P ) 6= 0, so Exti(M,A) 6= 0, so i ≤ n.

Definition. An algebra A is (Iwanaga) Gorenstein if inj. dim AA < ∞ and
inj. dimAA <∞.

Gorenstein Symmetry Conjecture (see Auslander and Reiten, Applications
of contravariantly finite subcategories, Adv. Math 1991). If one is finite, so
is the other.

Proposition 1. If inj. dim AA = r and inj. dimAA = s are both finite, they
are equal.

Proof. proj. dim ADA = inj. dimAA = s, so s ≤ r by the lemma. Dually
s ≥ r.

Also true for noetherian rings (Zaks, Injective dimension of semi-primary
rings, J. Alg. 1969).

Recall that if 0→ A→ I0 → I1 → . . . is the minimal injective resolution of
a f.d. algebra A, one says that A has dominant dimension ≥ n if I0, . . . , In−1

are all projective.

Nakayama conjecture (1958). If all In are projective, i.e. dom. dimA = ∞,
then A is self-injective.

Generalized Nakayama conjecture (Auslander and Reiten 1975). For any f.d.
algebra A, every indecomposable injective occur as a summand of some In.

It clearly implies the Nakayama conjecture, for if the In are projective, and
each indecomposable injective occurs as a summand of some In, then the
indecomposable injectives are projective.
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Example. For the commutative square, vertices 1(source),2,3,4(sink). There
are injective resolutions

0→P [1]→ I[4]→ 0,

0→P [2]→ I[4]→ I[3]→ 0,

0→P [3]→ I[4]→ I[2]→ 0,

0→P [4]→ I[4]→ I[2]⊕ I[3]→ I[1]→ 0,

so
0→ A→ I[4]4 → I[2]2 ⊕ I[3]2 → I[1]→ 0,

so all indecomposable injectives occur.

Proposition 2. The following are equivalent.
(i) The Nakayama conjecture (if dom. dimB =∞ then B is self-injective).
(ii) If AM is a generator-cogenerator and ExtiA(M,M) = 0 for all i > 0 then
M is projective.

Proof (i) implies (ii). Say AM satisfies the hypotheses. Let (B,M) be the
endomorphism correspondent. Then BM is projective-injective and B ∈
cogenn(M) for all n. Thus for all n there is an exact sequence

0→ B → I0 → · · · → In

with the I i projective-injective. Thus dom. dimB = ∞. Thus B is self-
injective, so add(M) = add(B), so BM is a generator, so AM is projective.

(ii) implies (i). Say dom. dimB = ∞. Thus B is QF-3 and let BM be the
faithful projective-injective module. Let AM be the endomorphism corre-
spondent. It is a generator-cogenerator. Then B ∈ cogen1(M) for all n, so
ExtiA(M,M) = 0 for all i > 0. Thus by (ii), AM is projective, so BM is a
generator. Thus B ∈ add(M) is injective.

Proposition 3. The following are equivalent.
(i) The Generalized Nakayama Conjecture (every indecomposable injective
occurs as a summand of some I i in the minimal injective resolution of B).
(ii) If AM is a cogenerator and ExtiA(M,M) = 0 for all i > 0 then M is
injective.

Proof. (i) implies (ii). Suppose AM satisfies the conditions. Then there is
corresponding BM which is injective, and B ∈ cogenn(M) for all n. Thus
by (i) every indecomposable injective is a summand of BM . Thus BM is a
cogenerator. Thus AM is injective.
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(ii) implies (i). Let AM be the sum of all indecomposable injectives occuring
in the I i. Then B ∈ cogenn(M) for all n. Let AM be the endomorphism
correspondent. Then AM is a cogenerator and ExtiA(M,M) = 0 for all
i > 0. Thus by (ii) AM is injective. Thus BM is a cogenerator. Thus all
indecomposable injectives occur as a summand of AM .

Boundedness Conjecture (Happel, Selforthogonal modules, 1995). If M is an
A-module with ExtiA(M,M) = 0 for all i > 0 then #M ≤ #A, where #M
denotes the number of non-isomorphic indecomposable summands of M .

This implies the GNC.

Finitistic Dimension Conjecture (see H. Bass, Finitistic dimension and a
homological generalization of semiprimary rings, Trans. Amer. Math. Soc.
1960) For any f.d. algebra A,

fin. dimA = sup{proj. dimM | proj. dimM <∞}

is finite.

Note that fin. dimA is not necessarily the same as the maximum of the
projective dimensions of the simple modules of finite projective dimension.

Example. If A is Gorenstein, with inj. dim AA = n = inj. dimAA, then
fin. dimA = n. For the lemma implies that anyA-moduleM has proj. dimM ≤
n or ∞, and proj. dimD(AA) = n.

Proposition 4. The finitistic dimension conjecture implies the Gorenstein
symmetry conjecture.

Proof. Assuming inj. dimAA = n <∞, we want to prove that inj. dim AA <
∞. We have proj. dim ADA = n < ∞. Thus any injective module has
projective dimension < ∞. Take a minimal injective resolution 0 → AA →
I0 → . . . . We show by induction on i that proj. dim Ω−iA <∞. There is an
exact sequence

0→ Ω−(i−1)A→ I i−1 → Ω−iA→ 0.

Applying HomA(−, X) for a module X gives a long exact sequence

· · · → Extm(Ω−(i−1)A,X)→ Extm+1(Ω−iA,X)→ Extm+1(I i−1, X)→ . . .

For m sufficiently large the outside terms are zero, hence so is the middle.

If some Ω−iA = 0, or is injective, then inj. dim AA < ∞, as desired, so
suppose otherwise. Let f : Ω−iA → I i be the inclusion. Then f belongs to
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the middle term in the complex

Hom(Ω−iA, I i−1)→ Hom(Ω−iA, I i)→ Hom(Ω−iA, I i+1)

and it is sent to zero in the third term. Now f is not in the image of the
map from the first term, for otherwise the map I i−1 → Ω−iA is a split
epimorphism, so the inclusion Ω−(i−1)A→ I i is a split monomorphism. But
Ω−(i−1)A is not injective, a contradiction. Thus Exti(Ω−iAA) 6= 0. Thus
proj. dim Ω−iA ≥ i. This contradicts that fin. dimA <∞.

Proposition 5. The finitistic dimension conjecture implies the generalized
Nakayama conjecture.

Proof. Assume the FDC. We show that if AM is a module and Extn(M,A) =
0 for all n ≥ 0 then M = 0 (the strong Nakayama conjecture). Taking
M = S[i], by Lemma 1 of section 1.7, this gives the GNC.

Take a minimal projective resolution→ P1 → P0 →M → 0. By assumption
the sequence

0→ HomA(P0, A)
f0−→ HomA(P1, A)

f1−→ Hom(P2, A)→ . . .

is exact. Let fin. dimAop = n <∞. Then Coker(fn) has projective resolution

0→ HomA(P0, A)
f0−→ HomA(P1, A)→ · · · → HomA(Pn+1, A)→ Coker(fn)→ 0

so it has finite projective dimension, so projective dimension ≤ n, so by
dimension shifting Im f1 is projective, so f0 must be a split mono. But
HomA(−, A) is an antiequivalence from PA to PAop . Thus the map P1 → P0

must be a split epi, so M = 0.

3.3 No loops conjecture

In this section we do not assume that K is algebraically closed, but we do
assume that A = KQ/I with I admissible.

No Loops Conjecture (Proved by Igusa 1990, based on Lenzing 1969). If
gl. dimA <∞ then Q has no loops (that is, Ext1(S[i], S[i]) = 0 for all i).

Proof. We use the trace function of Hattori and Stallings. I only sketch the
proof of its properties.
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(1) For any matrix θ ∈ Mn(A) we consider its trace tr(θ) ∈ A/[A,A], where
[A,A] is the subspace of A spanned by the commutators ab − ba. This
ensures that tr(θφ) = tr(φθ). This equality holds also for θ ∈Mm×n(A) and
φ ∈Mn×m(A).

(2) If P is a f.g. projective A-module it is a direct summand of a f.g. free
module F = An. Let p : F → P and i : P → F be the projection and
inclusion. One defines tr(θ) for θ ∈ End(P ) to be tr(iθp). This is well
defined, for if

An = F
p−→
←−
i

P
i′−→
←−
p′

F ′ = Am

with pi = 1P = p′i′, then tr(iθp) = tr((ip′)(i′θp)) = tr((i′θp)(ip′)) = tr(i′θp′).

(3) Any module M has a finite projective resolution P∗ →M , and an endo-
morphism θ of M lifts to a map between the projective resolutions

0 −−−→ Pn −−−→ . . . −−−→ P1 −−−→ P0 −−−→ M −−−→ 0

θn

y θ1

y θ0

y θ

y
0 −−−→ Pn −−−→ . . . −−−→ P1 −−−→ P0 −−−→ M −−−→ 0.

Define tr(θ) =
∑

i(−1)i tr(θi). One can show that does not depend on the
projective resolution or the lift of θ.

(4) One can show that given a commutative diagram with exact rows

0 −−−→ M ′ −−−→ M −−−→ M ′′ −−−→ 0

θ′

y θ

y θ′′

y
0 −−−→ M ′ −−−→ M −−−→ M ′′ −−−→ 0

one has tr(θ) = tr(θ′) + tr(θ′′).

(5) It follows that any nilpotent endomorphism has trace 0, since

0 −−−→ Im θ −−−→ M −−−→ M/ Im θ −−−→ 0

θ|Im θ

y θ

y 0

y
0 −−−→ Im θ −−−→ M −−−→ M/ Im θ −−−→ 0

so tr(θ) = tr(θ|Im θ) = tr(θ|Im(θ2)) = · · · = 0.

(6) Thus any element of J(A) as a map A→ A has trace 0, so J(A) ⊆ [A,A].
Thus (KQ)+ ⊆ I + [KQ,KQ].
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(7) Any loop of Q gives an element of (KQ)+. But it is easy to see that

I + [KQ,KQ] ⊆ span of arrows which are not loops + (KQ)2
+,

for example if p, q are paths then [p, q] ∈ (KQ)2
+ unless they are trivial paths

or one is trivial and the other is an arrow. Thus there are no loops.

Strong no loops conjecture (proved by Igusa, Liu, Paquette 2011). If S is a
1-dimensional simple module for a f.d. algebra and S has finite injective or
projective dimension, then Ext1(S, S) = 0.

Extension Conjecture (stated by Liu, Morin). If S is simple module for a f.d.
algebra and Ext1(S, S) 6= 0 then Extn(S, S) 6= 0 for infinitely many n.

Addendum to section 1.3

Definition. A module class C in A-mod is:

(i) covariantly finite if every A-module X has a left C-approximation. That
is, a map X → C with C ∈ C such that for all C ′ ∈ C the map Hom(C,C ′)→
Hom(X,C ′) is onto.

(ii) contravariantly finite if every A-module X has a right C-approximation.
That is, a map C → X with C ∈ C such that for all C ′ ∈ C the map
Hom(C ′, C)→ Hom(C ′, X) is onto.

(iii) functorially finite if it is covariantly finite and contravariantly finite.

Examples.
(1) If M is a module, then addM is functorially finite. In particular, if A
has finite representation type, every module class is of this form (for M the
direct sum of the indecomposable modules it contains), so every module class
is functorially finite.

Proof. The example at the end of section 1.3 applies.

(2) If the inclusion C → A-mod has a right (respectively left) adjoint then C
is contravariantly (respectively covariantly) finite.

Proof. SayR is right adjoint to the inclusion, then Hom(X,RY ) ∼= Hom(X, Y )
for allX ∈ C. For all Y there is a counit RY → Y , and any morphismX → Y
with X ∈ C factors through it.
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Lemma. For any module M , genM is covariantly finite (and dually cogenM
is contravariantly finite).

Proof. GivenX, take projective cover P → X. Take a left addM -approximation
P →M ′. Take the pushout

P −−−→ M ′y y
X −−−→ G

Since P → X is onto, so is M ′ → G, so G ∈ genM . If f : X → G′ with
G′ ∈ genM , then there is a map from Mn onto G′. Since P is projective, the
composition P → X → G′ lifts to a map P → Mn. Since the map P → M ′

is an approximation, the map P →Mn factors as P →M ′ →Mn. Now the
two maps X → G′ and M ′ → G′ agree on P , so there is an induced map of
the pushout G→ G′. Thus the map X → G′ factors as X → G→ G′. Thus
the map X → G is a left genM -approximation.

3.4 Torsion theories and τ-rigid modules

This is motivated by the paper of Adachi, Iyama and Reiten, τ -tilting theory,
2014, but I am not able to cover any of the content of that paper. Instead
many of the results come from the two papers by Auslander and Smaløin
1981.

A torsion theory in an abelian category A is a pair of full subcategories
(T ,F), the torsion and torsion-free classes, such that
(i) Hom(T ,F) = 0.
(ii) Any object X has a subobject tTX ∈ T with X/tTX ∈ F (so it fits in
an exact sequence 0 → tTX → X → X/tTX → 0 with first term in T and
last term in F).

Examples.
(1) The torsion and torsion-free modules give a torsion theory in the category
of Z-modules.

(2) For the path algebra of the quiver 1 → 2, there is a torsion theory
(addS[2], addS[1]) in A-mod.

(3) Let A be an algebra whose AR quiver is obtained by knitting, so A
is of finite representation type and all of its indecomposables are directing.
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Partition the indecomposables into two sets T, F with Hom(T, F ) = 0. Then
(addT, addF ) is a torsion theory in A-mod.

Notation. For an a set C of modules in A-mod or more generally of objects
in an abelian category

C⊥i,j,... = {X : Extn(M,X) = 0 for all M ∈ C and n = i, j, . . . },
⊥i,j,...C = {X : Extn(X,M) = 0 for all M ∈ C and n = i, j, . . . }.

Recall that Ext0 = Hom.

Properties. Let (T ,F) be a torsion theory.

(i) T = ⊥0F and F = T ⊥0 so either of the classes determines the other.

(ii) T is closed under quotients and extensions; F is closed under subobjects
and extensions.

(iii) The assignment sending X to tTX defines a functor A → T which is a
right adjoint to the inclusion T in A. The assigment sending X to X/tTX
defines a functor A → F which is a left adjoint to the inclusion F in A.

Proof. Easy. For example for (i), if Hom(T , X) = 0, then applying Hom(tTX,−)
to the torsion exact sequence gives an exact sequence

0→ Hom(tTX, tTX)→ Hom(tTX,X)→ Hom(tTX,X/tTX) = 0

so Hom(tTX, tTX) ∼= Hom(tTX,X) = 0, so tTX = 0 so X ∼= X/tTX ∈ F .

For (ii), for T given an exact sequence 0 → X → Y → Z → 0, apply
Hom(−, C) for C ∈ C to get an exact sequence

0→ Hom(Z,C)→ Hom(Y,C)→ Hom(X,C).

Now if X,Z ∈ T , then Hom(X,C) = Hom(Z,C) = 0, so Hom(Y,C) = 0, so
Y ∈ T . Also, if Y ∈ T , then Hom(Y,C) = 0, so Hom(Z,C) = 0, so Z ∈ T .

For (iii) observe that any map θ : X → Y induces a map tTX → tT Y since
the composition tTX → X → Y → Y/tT Y must be zero.

Proposition 1. For a module class T in A-mod the following are equivalent.
(i) T is a torsion class for some torsion theory in A-mod.
(ii) T = ⊥0(T ⊥0).
(iii) T = ⊥0C for some module class C.
(iv) T is closed under quotients and extensions.
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Proof. (i) implies (ii) implies (iii) implies (iv). Straightforward.

(iv) implies (i). Define F = T ⊥0. Given any module X, let T be a submodule
of X in T of maximal dimension. Then Hom(T , X/T ) = 0, for if T ′/T is
the image of such a map, then T ′/T is in T , hence so is T ′, contradicting
maximality. Thus X/T ∈ F .

Lemma (Auslander-Smalø). For modules M,N , tfae:
(i) Hom(N, τM) = 0.
(ii) Ext1(M, genN) = 0 (that is, Ext1(M,G) = 0 for all G ∈ genN).

Proof. (i)⇒(ii). If Hom(N, τM) = 0, then Hom(G, τM) = 0 for all G ∈
genN), so Hom(G, τN) = 0, so Ext1(N,G) = 0 by the Auslander-Reiten
formula.

(ii)⇒(i). Say f : N → τM is a non-zero map. Factorize it as a surjection
g : N → G followed by a mono h : G→ τM .

Suppose that h factors through an injective. Then it factors through the
injective envelope E(G) of G. Since τM has no injective summand, the
induced map E(G) → τM cannot be injective, so its kernel is non-zero.
Since G is essential in E(G), the kernel meets G. Thus G → τM has non-
zero kernel. Contradiction.

Thus Hom(G, τM) 6= 0, so Ext1(M,G) 6= 0.

Definition. Given a module class C in A-mod and M ∈ C, we say that
(i) M is Ext-projective in C if Ext1(M, C) = 0.
(ii) M is Ext-injective in C if Ext1(C,M) = 0.

Lemma 1. If (T ,F) is a torsion theory in A-mod, then
(i) X ∈ T is Ext-projective for T iff τX ∈ F .
(ii) X ∈ F is Ext-injective for F iff τ−X ∈ T .
(iii) There are bijections

Non-proj indec Ext-projs in T up to iso
τ−→
←−
τ−

Non-inj indec Ext-injs in F up to iso

Proof. (i) Say X ∈ T . Then τX ∈ F ⇔ Hom(T, τX) = 0 for all T ∈ T ⇔
Ext1(X, genT ) = 0 for all T ∈ T ⇔ X is Ext-projective. (ii) is dual. (iii)
follows.

Lemma 2. If (T ,F) is a torsion theory in A-mod, then
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(i) The Ext-injectives for T are the modules tT I with I injective. The inde-
composable Ext-injectives are the modules tT I[i] with I[i] /∈ F .
(ii) The Ext-projectives for F are the modules P/tT P with P projective. The
indecomposable Ext-projectives are the modules P [i]/tT P [i] with P [i] /∈ T .

Proof. (i) tT I is in T , and it is Ext-injective since if T ∈ T and 0→ tT I →
E → T → 0 is an exact sequence, then the pushout along tT I → I splits,
giving a map E → I. But E ∈ T , so it gives a map E → tT I, which is a
retraction for the given sequence. Conversely suppose X is Ext-injective in
T and X → I is its injective envelope. Then we have an injection X → tT I,
so X is a direct summand of tT I, and we have equality since X is essential
in I. (ii) is dual.

Definition. A module M is τ -rigid if Hom(M, τM) = 0.

Proposition 2. Tfae
(i) M is τ -rigid.
(ii) Ext1(M, genM) = 0.
(iii) genM is a torsion class and M is Ext-projective in genM .
(iv) M is Ext-projective in some torsion class.

Proof. (i)⇔(ii). The lemma.

(ii)⇒(iii). Suppose M is τ -rigid. To show that genM is a torsion class,
it suffices to show that if 0 → X → Y → Z → 0 is exact and X,Z ∈
genM , then so is Y . Choose a surjection Mn → Z. By (ii) The pullback
sequence splits, so the middle term of it is in genM , and hence so is Y . Now
Ext1(M, genM) = 0, so M is Ext-projective.

(iii)⇒(iv). Trivial.

(iv)⇒(ii). If M is Ext-projective in T , then Ext1(M, genM) = 0 since
genM ⊆ T .

Example. Let A be the path algebra of 1 → 2 → 3. Let M = 2 ⊕ 123. It
is τ -rigid. Then T = genM contains 123, 12, 2, 1. The torsion-free class is
F = T ⊥0 = M⊥0. It contains 3 and 23.

The Ext-projectives in T are 2, 12, 123. The Ext-injectives in T are 1, 12, 123.
The Ext-projectives in F are 3, 23. The Ext-injectives in F are 3, 23.

Remark. Any torsion class in A-mod is contravariantly finite, since the in-
clusion has a right adjoint. If M is τ -rigid, then genM is a functorially finite
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torsion class. The next thereom shows that any functorially finite torsion
class T arises this way.

Theorem (Auslander-Smalø, Almost split sequences in subcategories, 1981,
dual of Theorem 4.1(c).) Let T be a torsion class which is functorially
finite, let f : A → M be a minimal left T -approximation of A, and let
M ′ = M ⊕ Coker(f). Then
(i) T = genM = genM ′.
(ii) If θ : T � M with T ∈ T , then θ is a split epi. (M is a splitting
projective in T .)
(iii) M and M ′ are Ext-projective in T , so they are τ -rigid.
(iv) Any module T ∈ T is a quotient of a module in addM ′ by a submodule
in T .
(v) Any Ext-projective in T is in addM ′.

Proof. (i) If T ∈ T then there is a map An � T , and each component factors
through M , so Mn � T .

(ii) Since A is projective, the map f : A→M lifts to a map A→ T . By the
approximation property, this factors as A→ M → T . Now the composition
M → T →M must be an isomorphism by minimality.

(iii) If 0→ T → E →M → 0 is an exact sequence with T ∈ T , then E ∈ T ,
so the sequence splits by (ii). Thus M is Ext-projective.

Now 0→ Im f
i−→M

c−→ Coker f → 0 gives

Hom(M,T )→ Hom(Im f, T )→ Ext1(Coker f, T )→ Ext1(M,T ) = 0.

The composition Hom(M,T ) → Hom(Im f, T ) → Hom(A, T ) is surjective,
and Hom(Im f, T )→ Hom(A, T ) is injective, so Hom(M,T )→ Hom(Im f, T )
is surjective. Thus Ext1(Coker f, T ) = 0.

(iv) (My thanks to Andrew Hubery for this argument). Take a right add(M ′)-
approximation φ : W → T . Since T ∈ genM , this map is onto, so it gives
an exact sequence

0→ U
θ−→ W

φ−→ T → 0.

Given u ∈ U there is a map r : A → U , a 7→ au. Since A → M is a T -
approximation and W ∈ T , there is a map p, and hence a map q giving a
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commutative diagram

A
f−−−→ M

c−−−→ Coker f −−−→ 0

r

y p

y q

y
0 −−−→ U

θ−−−→ W
φ−−−→ T −−−→ 0.

Since φ is an approximation, q = φh for some h : Coker f → W . Then
φ(p− hc) = 0. Thus p− hc = θ` for some ` : M → U . Then θ(r − `f) = 0,
so since θ is mono, r = `i. Thus u ∈ Im(`). Repeating for a basis of U , we
get a map Mn � U , so U ∈ T .

(v) Follows.

3.5 Tilting modules

Definitions.
M is a partial tilting module if proj. dimM ≤ 1 and Ext1(M,M) = 0.

A partial tilting module M is a tilting module if there is an exact sequence
0 → A → M0 → M1 → 0 with M i ∈ addM . (Later we will see that it is
equivalent that #M = #A.)

M is a partial cotilting module if inj. dimM ≤ 1 and Ext1(M,M) = 0.

A partial cotilting module is a cotilting module if there is an exact sequence
0 → M1 → M0 → DA → 0 with Mi ∈ addM . (Again, it is equivalent that
#M = #A.)

Clearly M is a (partial) tilting A-module iff DM is a (partial) cotilting Aop-
module.

Remark. We deal only with classical tilting theory. There is a version allow-
ing higher projective dimension.

Lemma. If M is a partial tilting module then M is τ -rigid. Conversely if
M is τ -rigid, then Ext1(M,M) = 0, and if M is in addition faithful, then
proj. dimM ≤ 1 so it is a partial tilting module.

Proof. Use the AR formula DExt1(M,N) ∼= Hom(N, τM).

If proj. dimM ≤ 1 then Hom(DA, τM) = 0, so the AR formula takes the
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form DExt1(M,N) ∼= Hom(N, τM).

Suppose M is τ -rigid. If M is faithful, then so is DM , so Aop ↪→ DMn, for
some n, so Mn � DA. Applying Hom(−, τM) we get Hom(DA, τM) ↪→
Hom(Mn, τM) = 0. Thus Hom(DA, τM) = 0, so proj. dimM ≤ 1.

Theorem of Bongartz. Let M be a partial tilting module. Take a basis
of ξ1, . . . , ξn of Ext1(M,A), consider the tuple (ξ1, . . . , ξn) as an element of
Ext1(Mn, A), and let

0→ A→ E →Mn → 0.

be the corresponding universal extension. Then T = E ⊕ M is a tilting
module.

Thus every partial tilting module is a direct summand of a tilting module, and
by duality every partial cotilting module is a direct summand of a cotilting
module.

Proof. The long exact sequence for Hom(M,−) gives

Hom(M,Mn)
ξ−→ Ext1(M,A)→ Ext1(M,E)→ Ext1(M,Mn),

the map ξ is onto, and Ext1(M,Mn) = 0, so Ext1(M,E) = 0. From the
long exact sequence for Hom(−,M) one gets Ext1(E,M) = 0, from the long
exact sequence for Hom(−, E) one gets Ext1(E,E) = 0. Also A and Mn

have projective dimension ≤ 1, hence so does E.

A partial tilting module M is τ -rigid, so gives a torsion theory (genM,M⊥0).
Moreover gen1M ⊆ genM ⊆M⊥1.

Proposition 1. For a partial tilting module M , tfae:
(i) M is a tilting module.
(ii) M⊥0,1 = 0.
(iii) genM = M⊥1.
(iv) gen1M = M⊥1.
(v) X is Ext-projective in M⊥1 ⇔ X ∈ addM .

Proof of equivalence. (i) ⇒ (ii). If X ∈ M⊥0,1, apply Hom(−, X) to the
exact sequence 0→ A→M0 →M1 → 0, to deduce that Hom(A,X) = 0.

(ii) ⇒ (iii). Suppose X ∈ M⊥1. Take a basis of Hom(M,X) and use it to
form the universal map f : Mn → X. Then Im f ∈ genM . Consider the
exact sequence 0 → Im f → X → X/ Im f → 0. Apply Hom(M,−) giving
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an exact sequence

0→ Hom(M, Im f)→ Hom(M,X)→ Hom(M,X/ Im f)→ Ext1(M, Im f).

By construction the map Hom(M,Mn) → Hom(M,X) is onto, hence so is
the map Hom(M, Im f) → Hom(M,X). Also Ext1(M, Im f) = 0 since M
is τ -rigid. Thus Hom(M,X/ Im f) = 0. Also Ext1(M,X/ Im f) = 0. Thus
X/ Im f ∈M⊥0,1. Thus X/ Im f = 0, so f is onto, so X ∈ genM .

(iii) ⇒ (iv). Suppose X ∈ M⊥1. Then it is in genM . Let L be the kernel
of the universal map Mn → X. Then applying Hom(M,−) we see that L ∈
M⊥1, so L ∈ genM . Say M ′′ � L. Now the sequence M ′′ → Mn → X → 0
shows that X ∈ gen1M .

(iv)⇒ (v). Clearly M and so any X ∈ add(M) is in M⊥1 and Ext-projective.
Conversely if X is in M⊥1 and Ext-projective, then by (iv) there is an exact

sequence M ′′ f−→ M ′ → X → 0. This gives an exact sequence 0 → Im f →
M ′ → X → 0 with Im f ∈ genM ⊆ M⊥1. By assumption this sequence
splits, so X ∈ addM .

(v) ⇒ (i). It suffices to show that E in Bongartz’s sequence is in addM ,
and for this it suffices to show it is Ext-projective in M⊥1. We know it is
in M⊥1. If Y ∈ M⊥1, apply Hom(−, Y ) to the Bongartz sequence to get
Ext1(Mn, Y )→ Ext1(E, Y )→ Ext1(A, Y ), so Ext1(E, Y ) = 0.

Dually, a partial cotilting module M gives a torsion theory (⊥0M, cogenM).
Moreover cogen1M ⊆ cogenM ⊆ ⊥1M .

Proposition 2. For a partial cotilting module M , tfae:
(i’) M is a cotilting module.
(ii’) ⊥0,1M = 0.
(iii’) cogenM = ⊥1M .
(iv’) cogen1M = ⊥1M .
(v’) X is Ext-injective in ⊥1M ⇔ X ∈ addM .

Proof. Dual of Proposition 1.

Proposition 3. If AM is a (co)tilting module, then it is f.b. and if B =
EndA(M) then BM is also a (co)tilting module.

Proof. If AM is tilting, then gen1M = M⊥1, which contains DA, so AM is
f.b.

(i) Applying HomA(−,M) to the exact sequence 0 → A → M0 → M1 → 0
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gives
0→ HomA(M1,M)→ HomA(M0,M)→M → 0

and HomA(M i,M) ∈ add(HomA(M,M)) = add(BB), so proj. dim BM ≤ 1.

(ii) The tilting sequence 0 → A → M0 → M1 → 0 stays exact on apply-
ing Hom(−,M). Thus A ∈ cogen2(BM). Thus Ext1

B(M,M) = 0 by the
proposition in section 3.1.

(iii) Applying HomA(−,M) to a projective resolution 0→ P1 → P0 →M →
0 of M gives an exact sequence

0→ B →M0 →M1 → 0

where M i = HomA(Pi,M) ∈ add(BM). Thus BM is a tilting module.

Dually for cotilting.

3.6 The Brenner-Butler Theorem

Let AM be a cotilting module and B = EndA(M), so BM is also cotilting.

In A-mod we have a torsion theory (TA,FA) = (⊥0
AM, cogen AM). Since AM

is cotilting we have

FA = cogenM = cogen1M = ⊥1M

= {X ∈ A-mod : Ext1(X,M) = 0}
= {X ∈ A-mod : Hom(τ−M,X) = 0}
= {X ∈ A-mod : Hom(τ−M,X) = 0}

(where the last step is because inj. dimM ≤ 1, so there is no non-zero map
from τ−M to a projective module).

In B-mod we have a torsion theory (TB,FB) = (⊥0
BM, cogen BM). Since

BM is cotilting we have the equivalent alternative descriptions of FB.

Brenner-Butler Theorem. There are antiequivalences

FA
HomA(−,M)−→
←−

HomB(−,M)

FB and TA
Ext1A(−,M)
−→
←−

Ext1B(−,M)

TB.
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Proof. Since M is cotilting, F = cogen1M , so the first antiequivalence is
Corollary 2 in section 3.1.

Given a module AX with HomA(X,M) = 0 we show that HomB(Ext1
A(X,M),M) =

0 and construct a natural isomorphism

X → Ext1
B(Ext1(X,M),M).

Indeed, take a projective cover of X to get a sequence 0→ L→ P → X → 0.
It gives an exact sequence of B-modules

0→ HomA(P,M)→ HomA(L,M)→ Ext1
A(X,M)→ 0

Now P,L ∈ cogenM = cogen1M , so the natural maps P → HomB(HomA(P,M),M)
and L → HomB(HomA(L,M),M) are isomorphisms and HomA(L,M) ∈
cogen1(BM) = ⊥1(BM) so Ext1

B(Hom(L,M),M) = 0. Thus we get a com-
mutative diagram

0 −−−→ L −−−→ P −−−→ X −−−→ 0y y
0 −−−→ (1(X,M),M) −−−→ ((L,M),M) −−−→ ((P,M),M) −−−→ 1(1(X,M),M) −−−→ 0

(where we omit the words Hom and Ext) with exact rows and in which the
vertical maps are isomorphisms. Thus HomB(Ext1

A(X,M),M) = 0 and there
is an induced isomorphism X → Ext1

B(Ext1
A(X,M),M). One also needs to

show that this is a natural isomorphism, but we omit the proof of this.
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Example.

Remark. The usual form of the Brenner-Butler Theorem is as follows. Sup-
pose AT is a tilting A-module and let Γ = EndA(T )op. Then DT is a cotilting
Aop-module, so a cotilting Γ-module. Composing the functors with duality
we have equivalences
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Hom(T,−) from T⊥1 = genT ⊆ A-mod to ⊥1DT = cogenDT = {Y :
TorΓ

1 (T, Y ) = 0} ⊆ Γ-mod. The inverse equivalence is given by T ⊗Γ −.

Ext1
A(T,−) from T⊥0 ⊆ A-mod to ⊥0DT = {Y : T ⊗Γ Y = 0} ⊆ Γ-mod. The

inverse equivalence is given by TorΓ
1 (T,−).

Definition. The Grothendieck group K0(A) of an abelian category A is the
additive group generated by symbols [X] for each object X in A, modulo the
relations [Y ] = [X] + [Z] for any exact sequence 0→ X → Y → Z → 0.

Lemma. K0(A-mod) is the free Z-module on the symbols [S], with S running
through the simple modules up to isomorphism.

Proof. Use that every object has a composition series and the Jordan-Hölder
theorem.

Corollary 1. If AM is a cotilting module and B = EndA(M), then there is
an isomorphism

θ : K0(A-mod)→ K0(B-mod), [X] 7→ [HomA(X,M)]− [Ext1
A(X,M)].

(Thus the canonical basis of K0(B-mod) gives a new basis of K0(A-mod),
hence the name “tilting”.)

Proof. If we apply HomA(−,M) to a short exact sequence of A-modules, say
0→ X → Y → Z → 0 we get a long exact sequence of B-modules

0→ Hom(Z,M)→ Hom(Y,M)→ Hom(X,M)→

Ext1(Z,M)→ Ext1(Y,M)→ Ext1(X,M)→ 0.

Now the relations for K0(B-mod) imply that

θ([Y ]) = [HomA(Y,M)]− [Ext1
A(Y,M)] = [HomA(X,M)]− [Ext1

A(X,M)]

+[HomA(Z,M)]− [Ext1
A(Z,M)] = θ([X]) + θ([Z])

so that θ is well-defined.

Swapping the roles of A and B there is a map φ in the reverse direction.

If X ∈ cogenM or X ∈ ⊥0M , then φ(θ([X])) = [X]. Because any X belongs
to a short exact sequence whose ends are torsion and torsion-free, it follows
that φθ = 1. Similarly θφ = 1.
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We write #M for the number of isomorphism classes of indecomposable
summands of M . Thus #A is the number of isomorphism classes of inde-
composable projective A-modules, so the number of isomorphism classes of
simple A-modules.

Corollary 2. Any partial (co)tilting module M has #M ≤ #A, with equality
if and only if M is (co)tilting.

Proof. Any tilting module has #A summands, and by Bongartz, any partial
tilting module is a summand to a tilting module.

Definition. An algebra A is a tilted algebra if it has a tilting module AM
such that B = EndA(M) is hereditary. In this case one can show that every
indecomposable A-module is in FA or in TA.

3.7 Wide module classes

In this section A is an arbitrary algebra, not even necessarily f.d., but we
only consider f.d. modules.

Definition. A module class C of A-mod is wide if it is closed under kernels,
cokernels and extensions.

Lemma.
(i) If C is wide, then it is also closed under images, and it is an abelian
category in its own right, and the inclusion functor is exact.
(ii) If A is hereditary, then full subcategory is wide if and only if it is closed
under direct summands and has the 2 out of three property for short exact
sequences. That is, if 0 → X → Y → Z → 0 is exact, and if two of X, Y, Z
are in C, then so is the third.

I learnt (ii) from Andrew Hubery. Full subcategories closed under direct
summands and satisfying the 2 out of three property are sometimes called
thick subcategories.

Proof. (i) If θ : X → Y then X → Im θ is the cokernel of Ker θ → X.

(ii) If C is wide, it has the 2 out of 3 property. Conversely, if θ : X → Y ,
one gets ξ : 0 → Ker θ → X → Im θ → 0 and ζ : 0 → Im θ → Y → Coker θ.
Applying Hom(Coker θ,−) to ξ gives

→ Ext1(Coker θ,X)→ Ext1(Coker θ, Im θ)→ Ext2(Coker θ,Ker θ) = 0
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so ζ comes from some η. Thus ζ is the pushout of eta, so there is a commu-
tative diagram

η : 0 −−−→ X −−−→ E −−−→ Coker θ −−−→ 0y y ∥∥∥
ζ : 0 −−−→ Im θ −−−→ Y −−−→ Coker θ −−−→ 0

By diagram chasing it follows that there is an exact sequence 0 → X →
E ⊕ Im θ → Y → 0. Since C is closed under extensions and summands, it
follows that Im θ ∈ C. Then also Ker θ and Coker θ ∈ C.

Remark. Wide subcategories appear naturally. The recent interest is be-
cause of a paper of C. Ingalls and H. Thomas, Noncrossing partitions and
representations of quivers, 2009, and subsequent developments, but this is
beyond the scope of the course.

Definition. We say that an A-module X is C-simple if it is in C, and is simple
as an object of C. Thus there is no exact sequence 0 → U → X → V → 0
with U, V non-zero and in C.

Clearly any C-simple is a brick, that is, its endomorphism algebra is a division
algebra (so K, if it is algebraically closed).

If B is a collection of A-modules, we write F(B) for the full subcategory of
A-mod consisting of the modules X with filtrations by submodules

0 = X0 ⊆ X1 ⊆ · · · ⊆ Xr = X

such that each Xi/Xi−1 is isomorphic to a module in B. Clearly F(B) is
closed under extensions.

Proposition 1. (Ringel, Representations of K-species and bimodules, 1976)
Suppose that B is a set of orthogonal bricks, with orthogonality meaning that
Hom(X, Y ) = 0 if X, Y ∈ B and X 6∼= Y . Then F(B) is a wide subcategory
of A-mod, and the F(B)-simples are the modules isomorphic to modules in
B.

Clearly any wide subcategory C arises as F(B) where one takes B to be the
set of C-simple objects.

Special case. If B = {X} with X is a brick without self-extensions, then
F(B) = addX. This is wide, and equivalent to K-mod, and X is C-simple.
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Proof. Let f : X → Y be a morphism where X and Y have filtrations of
lengths n and m.

We prove by induction on n that Ker f has a filtration. The result for Coker f
is dual.

We can assume f(X1) 6= 0, for otherwise X1 ⊆ Ker f and Ker f/X1 is the
kernel of the induced map f ′ : X/X1 → Y , and by induction this kernel is in
F(B), hence Ker f ∈ F(B).

We may also assume f(X1) = Y1, for there is some i with f(X1) ⊆ Yi but
f(X1) 6⊆ Yi−1. Then

X1 → Yi → Yi/Yi−1

is a non-zero map between modules isomorphic to modules in B, so an iso-
morphism. Thus f |X1 is injective, so f(X1) ∼= X1

∼= Yi/Yi−1, and Yi =
Yi−1 ⊕ f(X1). Now if the filtration of Y is 0 ⊂ Y1 ⊂ · · · ⊂ Ym = Y , then Y
has another filtration

0 ⊂ f(X1) ⊂ f(X1)⊕ Y1 ⊂ · · · ⊂ f(X1)⊕ Yi−1 = Yi ⊂ Yi+1 ⊂ · · · ⊂ Ym = Y.

whose successive quotients are f(X1), Y1, Y2/Y1, . . . , Yi−1/Yi−2, Yi+1/Yi, . . . , Ym/Ym−1

which are all isomorphic to modules in B, as required.

Now let f : X/X1 → Y/Y1 be the induced map. The map X → X/X1,
x 7→ X1 + x induces a map g : Ker f → Ker f . If f(X1 + x) = 0, then
f(x) ∈ Y1 so f(x) = f(x1) for some x1 ∈ X1, so x′ = x − x1 ∈ Ker f and
X1 + x = X1 + x′, so g is onto. Also if x ∈ Ker f ∩X1 then x = 0 since f |X1

is injective, so g is mono.

Thus Ker f ∼= Ker f , and by induction this is in F(B).

Proposition 2. If X is a set of modules of projective dimension ≤ 1, then

X⊥0,1 = {M ∈ A-mod : Hom(X,M) = Ext1(X,M) = 0 for all X ∈ X}.

is a wide subcategory.

Proof. Say θ : M → N is in X⊥0,1 and X ∈ X . We get

0→ Hom(X,Ker θ)→ Hom(X,M)→ Hom(X, Im θ)

→ Ext1(X,Ker θ)→ Ext1(X,M)→ Ext1(X, Im θ)→ 0.

Also one has

0→ Hom(X, Im θ)→ Hom(X,N)→ Hom(X,Coker θ)
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→ Ext1(X, Im θ)→ Ext1(X,N)→ Ext1(X,Coker θ)→ 0.

Thus Hom(X,Ker θ) = 0 and Ext1(X,Ker θ) ∼= Hom(X, Im θ) = 0, and
similarly for Coker θ. Closure under extensions is easy.

Remark. This is the perpendicular category of W. Geigle and H. Lenzing, Per-
pendicular categories with applications to representations and sheaves, 1991.
In fact assuming that the modules in X are cokernels of monomorphisms be-
tween finitely generated projective modules, there is an epimorphism of rings,
A → AX , called the universal localization, which has the effect of inverting
the maps between projectives. It follows that restriction induces an equiva-
lence AX -mod→ X⊥0,1. For more about universal localization see chapter 4
of the book A. H. Schofield, Representations of rings over skew fields, 1985.

Definitions. By a stability function for A we mean a group homomorphism
θ : K0(A-mod)→ R. We write θ(X) for θ([X]). Thus θ(0) = 0, θ(X) = θ(Y )
if X ∼= Y , and θ(Y ) = θ(X) + θ(Z) for a short exact sequence 0 → X →
Y → Z → 0. It is equivalent to fix θ(S) ∈ R for each simple module S.

An A-module X is said to be θ-semistable if θ(X) = 0 and θ(Y ) ≤ 0 for
all Y ⊆ X. It is θ-stable if θ(X) = 0 and θ(Y ) < 0 for all non-zero proper
submodules Y of X. Observe that X is θ-semistable if and only if θ(X) = 0
and θ(Z) ≥ 0 for any quotient Z of X.

Remark. The notion comes from “geometric invariant theory”. See the paper
A. D. King, Moduli of representations of finite-dimensional algebras, 1994.

Proposition 3. The θ-semistable modules form a wide subcategory C. The
C-simples are the θ-stables.

Proof. Let f : X → Y is a map between θ-semistable modules. We have
θ(Im f) ≤ 0 since it is a submodule of Y , and θ(Im f) ≥ 0 since it as a quo-
tient of X. Thus θ(Im f) = 0. Thus by additivity θ(Ker f) = θ(Coker f) = 0.
Now any submodule U of Ker f is a submodule of X, so θ(U) ≤ 0. Thus
Ker f is θ-semistable. Similarly any quotient V of Coker f is a quotient of Y
so θ(V ) ≥ 0. Thus Coker f is θ-semistable.

Suppose X ⊆ Y . If X and Y/X are θ-semistable, we need to show that
Y is θ-semistable. By additivity we have θ(Y ) = 0. Now if U ⊆ Y then
U ∩X ⊆ X and U/(U ∩X) ∼= (U +X)/X ⊆ Y/Z, so both have θ ≤ 0, hence
θ(U) ≤ 0.
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4 Representations of quivers

Let Q be a quiver and let A = KQ. For simplicity throughout K is alge-
braically closed. We consider f.d. A-modules.

4.1 Bilinear and quadratic forms

We consider ZQ0 as column vectors, with rows indexed by Q0. Let ε[i] be the
coordinate vector associated to a vertex i ∈ Q0. Thus ε[i]j = δij.

The dimension vector of a module X is dimX ∈ ZQ0 .

Definition. The Ringel form is the bilinear form 〈−,−〉 on ZQ0 defined by

〈α, β〉 =
∑
i∈Q0

αiβi −
∑
a∈Q1

αt(a)βh(a)

The corresponding quadratic form q(α) = 〈α, α〉 is called the Tits form.
There is a corresponding symmetric bilinear form

(α, β) = q(α + β)− q(α)− q(β) = 〈α, β〉+ 〈β, α〉.

Note that q and (−,−) don’t depend on the orientation of Q.

The radical of q is rad q = {α ∈ ZQ0 : (α, β) = 0 for all β ∈ ZQ0}.

Theorem (Standard resolution) If X is a KQ-module (not necessarily f.d.)
then it has projective resolution

0→
⊕
a∈Q1

KQeh(a) ⊗K et(a)X →
⊕
i∈Q0

KQei ⊗K eiX → X → 0.

Proof. We had this before.

This shows KQ is left hereditary and

Corollary. If X and Y are (f.d.) KQ-modules, then

〈dimX, dimY 〉 = dim Hom(X, Y )− dim Ext1(X, Y ).
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Proof. Apply Hom(−, Y ) to the projective resolution to get an exact sequence

0→ Hom(X, Y )→
⊕
i∈Q0

Hom(KQei ⊗K eiX, Y )→

→
⊕
a∈Q1

Hom(KQeh(a) ⊗K et(a)X, Y )→ Ext1(X, Y )→ 0.

Now Hom(KQej⊗KeiX, Y ) ∼= HomK(eiX,Hom(KQej, Y )) ∼= HomK(eiX, ejY )
so it has dimension (dimX)i(dimY )j.

4.2 Cartan and Coxeter matrices

Suppose that Q has no oriented cycles, so A = KQ is f.d. and so are the
projective modules P [i] = KQei.

Definition. The Cartan matrix C has rows and column indexed by Q0, and
is defined by

Cij = dim Hom(P [i], P [j]) = dim eiKQej

= number of paths from j to i.

Thus the jth column is Cε[j] = dimP [j], and the jth row is CT ε[j] =
dim I[j]. Namely, (Cε[j])i = Cij = dim eiKQej = dim eiP [j] and (CT ε[j])i =
CT
ij = Cji = dimD(ejKQei) = dim eiI[j].

Lemma 1. For any α we have 〈dimP [j], α〉 = αj = 〈α, dim I[j]〉. It follows
that C is invertible, with (C−1)ij = 〈ε[j], ε[i]〉.

Proof. When α = dimX, we have

〈dimP [j], α〉 = dim Hom(P [j], X)− dim Ext1(P [j], X) = dim ejX

〈α, dim I[j]〉 = dim Hom(X, I[j])− dim Ext1(X, I[j]) =

= dim Hom(P [j], X) = dim ejX

It follows for all α by additivity.

Now using that dimP [j] =
∑

iCijε[i], the equality 〈dimP [j], ε[k]〉 = δjk gives
that

∑
iCij〈ε[i], ε[k]〉 = δjk.

Definition. The Coxeter matrix is Φ = −CTC−1. That is, it is the matrix
with Φ dimP [i] = − dim I[i] for all i. Thus Φ dimP = − dim ν(P ) for any
projective module P .
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Lemma 2. If X has no projective summand, then dim τX = Φ dimX.

Proof. If 0 → P1 → P0 → X → 0 is the minimal projective resolution,
then P1 → P0 → X → 0 is a minimal projective presentation, so one gets a
sequence

0→ τX → ν(P1)→ ν(P0)→ ν(X)→ 0

Since X has no projective summand, Hom(X,A) = 0, so ν(X) = 0. Thus

dim τX = dim ν(P1)− dim ν(P0)

= Φ(dimP0 − dimP1) = Φ dimX.

Recall that we have Hom(τ−X, Y ) ∼= DExt1(Y,X) ∼= Hom(X, τY ).

Lemma 3. We have 〈α, β〉 = −〈β,Φα〉 = 〈Φα,Φβ〉. Moreover Φα = α if and
only if α ∈ rad q.

Proof. 〈dimP [i], β〉 = βi = 〈β, dim I[i]〉 = −〈β,Φ dimP [i]〉, and now use
that the dimP [i] span ZQ0 .

Φα = α iff 〈β, α− Φα〉 = 0 for all β. But this is 〈β, α〉+ 〈α, β〉.

4.3 Classification of quivers

A quiver is Dynkin if it is obtained by orienting one of the following graphs
(each with n vertices):
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A quiver is extended Dynkin if it is obtained by orienting one of the following
(each with n+ 1 vertices). In each case we define δ ∈ NQ0 .

Properties. (1) Any extended Dynkin quiver has at least one vertex i with
δi = 1. Such a vertex is called an extending vertex. Deleting an extending
vertex one obtains the corresponding Dynkin quiver.

(2) δ is in the radical of q. For this, we need to check that (δ, ε[i]) = 0 for all
i. That is, 2δi = Σj−iδj.

Lemma 1. Every connected quiver is either Dynkin, or has an extended
Dynkin subquiver.

Proof. This is a case-by-case analysis. If there is a loop, it contains Ã0. If
there is a cycle it contains Ãn. If there is a vertex of valency 4 it contains
D̃4. If there are two vertices of valency 3 it contains D̃n. Thus (unless it is
An) it is a star with three arms. If all arms have length > 1 then contains
Ẽ6. If two arms have length 1 then it is Dynkin. Thus suppose one arm has
length 1. If both remaining arms have length > 2 then it contains Ẽ7. Thus
suppose one has length 2. If the other length is 2,3,4 then it is Dynkin, if
> 4 it contains Ẽ8.
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Theorem. (i) If Q is Dynkin, q is positive definite, that is q(α) > 0 for all
0 6= α ∈ ZQ0 .
(ii) IfQ is extended Dynkin quivers, q is positive semidefinite, that is q(α) ≥ 0
for all α ∈ ZQ0 . Moreover α ∈ rad q ⇔ q(α) = 0⇔ α ∈ Zδ.
(iii) If Q is connected and not Dynkin or extended Dynkin, then there is
α ∈ NQ0 with (α, ε[i]) ≤ 0 for all i and q(α) < 0.

Proof. (ii) For i 6= j we have (ε[i], ε[j]) ≤ 0. Thus

0 ≤ −1

2

∑
i 6=j

(ε[i], ε[j])δiδj

(
αi
δi
− αj
δj

)2

=
∑
i 6=j

(ε[i], ε[j])αiαj −
1

2

∑
i 6=j

(ε[i], ε[j])δi
α2
j

δj
− 1

2

∑
i 6=j

(ε[i], ε[j])δj
α2
i

δi

=
∑
i 6=j

(ε[i], ε[j])αiαj −
∑
i 6=j

(ε[i], ε[j])δi
α2
j

δj

=
∑
i 6=j

(ε[i], ε[j])αiαj −
∑
j

(∑
i 6=j

(ε[i], ε[j])δi

)
α2
j

δj

=
∑
i 6=j

(ε[i], ε[j])αiαj −
∑
j

((δ, ε[j])− (ε[j], ε[j])δj)
α2
j

δj

=
∑
i 6=j

(ε[i], ε[j])αiαj +
∑
j

(ε[j], ε[j])α2
j

=
∑
i,j

(ε[i], ε[j])αiαj = (α, α) = 2q(α).

Thus q is positive semidefinite.

If q(α) = 0 then αi/δi is independent of i, so α is a multiple of δ. Since some
δi = 1, α ∈ Zδ.

Trivially α ∈ Zδ ⇒ α ∈ rad q ⇒ q(α) = 0.

(i) Follows by embedding in the corresponding extended Dynkin diagram.

(iii) Take an extended Dynkin subquiver Q′ with radical vector δ. If all
vertices of Q are in Q′, take α = δ. If i is a vertex not in Q′ but connected
to Q′ by an arrow, take α = 2δ + ε[i].
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Definition. We suppose that Q is Dynkin or extended Dynkin. The roots are
the elements of

∆ = {α ∈ ZQ0 | α 6= 0, q(α) ≤ 1}.
(One can define roots for arbitrary Q, but the definition is more complicated.)

A root α is real if q(α) = 1, otherwise it is imaginary. In the Dynkin case all
roots are real. In the extended Dynkin case the imaginary roots are rδ with
r 6= 0.

Lemma 2. Any root α is positive or negative (that is, α or −α ∈ NQ0).

Proof. Write α = α+ − α− with α+, α− ∈ NQ0 having disjoint support, then
(α+, α−) ≤ 0. But then

1 ≥ q(α) = q(α+) + q(α−)− (α+, α−) ≥ q(α+) + q(α−)

so one of α+, α− is an imaginary root, hence a multiple of δ. Impossible if
disjoint support.

Lemma 3. If Q is Dynkin, then ∆ is finite.

Proof. Embed in an extended Dynkin quiver with radical vector δ and ex-
tending vertex i. Roots α for Q correspond to roots with αi = 0. Now

q(α± δ) = q(α)± (α, δ) + q(δ) = q(α) = 1

so β = α ± δ is a root, and hence positive or negative. Now βi = ±1. Thus
−δj ≤ αj ≤ δj for all j.

(Alternatively, ∆ is a discrete subset of the closed bounded (hence compact)
subset {α ∈ RQ0 : q(α) ≤ 1} of RQ0 .)

Lemma 4. If Q is Dynkin then ΦN = 1 for some N > 0.

Proof. q(Φα) = q(α), so Φ induces a map from the set of roots ∆ to itself.
Since Φ is invertible this map is injective, and since ∆ is finite, this map is
a permutation. Thus it has finite order, say ΦN(α) = α for all α ∈ ∆. Since
ε[i] ∈ ∆, it follows that ΦN(α) = α for all α.

4.4 Gabriel’s Theorem

Gabriel’s Theorem.
(i) If Q is a connected quiver, then KQ has finite representation type if and
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only if Q is Dynkin.
(ii) If Q is Dynkin, then the assigment X  dimX gives a 1-1 correspondence
between indecomposable modules and positive roots.

Recall that there is N > 0 with ΦN = 1.

Lemma 1. If Q is Dynkin, then every indecomposable module X is of the
form τ−mP [i] for some projective module P [i] and some 0 ≤ m < N .

Proof. If not, then X, τX, . . . , τN−1X are all indecomposable and non-
projective, so their direct sum has dimension vector β = α+Φα+· · ·+ΦN−1α,
where α = dimX. But then β = Φβ, so β ∈ rad q so q(β) = 0, so β = 0,
which is impossible.

Definition. If Q is extended Dynkin and X is a KQ-module, we define

defect(X) = 〈δ, dimX〉 = −〈dimX, δ〉.

Observe that this only depends on the dimension vector of X, so it is additive
on short exact sequences.

Lemma 2. Suppose Q is extended Dynkin without oriented cycles. Then
defect(τ−mP [i]) = −δi < 0 and defect(τmI[i]) > 0 for all i,m.

Proof. Clearly defect(P [i]) = −δi < 0 and defect(I[i]) > 0. Also, if X
is indecomposable and non-projective, then defect(X) = defect(τX). By
induction on m, none of the modules τ−mP [i] can be injective, so they all
have defect −δi. Similarly none of the modules τmI[i] can be projective, so
they all have defect δi.

Proof of Gabriel’s Theorem (i). If Q is Dynkin, then Lemma 1 shows KQ
has finite representation type. Suppose Q is non-Dynkin. Want to show
KQ infinite representation type. We may assume Q has no oriented cycle,
else true. We may assume Q is extended Dynkin. Now Lemma 2 ensures
infinitely many non-isomorphic indecomposables.

Remark. Suppose Q is connected, without oriented cycles. Now radP [i] =⊕
t(a)=i P [h(a)] and I[i]/ soc I[i] =

⊕
h(a)=i I[t(a)], so each arrow a : i → j

gives irreducible maps P [j]→ P [i] and I[j]→ I[i].

Starting from the projectives P [i] one can knit without obstructions to form
the preprojective component.

Starting from the injectives I[i] one can knit without obstructions to form
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the preinjective component.

In the Dynkin case these are the same

In the non-Dynkin case they are disjoint

and

Lemma 3. If ξ : 0 → X → Y → Z → 0 is a non-split exact sequence of f.d.
modules for any algebra, then

dim End(Y ) < dim End(X ⊕ Z).

Proof. Applying Hom(−, Y ) to the short exact sequence gives a long exact
sequence

0→ Hom(Z, Y )→ Hom(Y, Y )→ Hom(X, Y )→ . . .
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so that
dim Hom(Y, Y ) ≤ dim Hom(Z, Y ) + dim Hom(X, Y ).

Similarly, applying Hom(X,−) gives

dim Hom(X, Y ) ≤ dim Hom(X,X) + dim Hom(X,Z).

Now applying Hom(Z,−) gives the long exact sequence

0→ Hom(Z,X)→ Hom(Z, Y )→ End(Z)
f−→ Ext1(Y,X)

and the connecting map f is nonzero since it sends 1Z to the element in
Ext1(Y,X) represented by ξ, so

dim Hom(Z, Y ) < dim Hom(Z,X) + dim Hom(Z,Z).

Combining these three inequalities we get the result.

Proof of Gabriel’s Theorem (ii). Every indecomposable is preprojective, so
uniquely determined by its dimension vector. Also every indecomposable is
a brick with no self-extensions, so its dimension vector is a root since

q(dimX) = dim End(X)− dim Ext1(X,X) = 1.

Now suppose α is a positive root. There are modules of dimension vector α,
so let X be one with dim End(X) minimal. If it decomposes, say X = U⊕V ,
then Ext1(U, V ) = Ext1(V, U) = 0 by Lemma 3. Thus

1 = q(α) = dim End(U ⊕ V )− dim Ext1(U ⊕ V, U ⊕ V )

= q(dimU) + q(dimV ) + dim Hom(U, V ) + dim Hom(V, U)

≥ 1 + 1 + 0 + 0 = 2,

a contradiction.

4.5 Preprojective, regular and preinjective modules

Proposition. Let Q be a connected non-Dynkin quiver without oriented cy-
cles.
(a) The module category divides into the three classes
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the indecomposable preprojectives are the modules τ−mP [i],
the indecomposable preinjectives are the modules τmI[i],
the indecomposable regular modules are all the rest.

Thus a module X is preprojective ⇔ τNX = 0 for N � 0,
a module X is preinjective ⇔ τ−NX = 0 for N � 0,
a module X is regular ⇔ X ∼= τ−NτNX = 0 for all N ∈ Z.

(b) The indecomposable preprojectives and preinjectives are directing mod-
ules, so they are bricks without self-extensions, and they are uniquely deter-
mined by their dimension vectors.

(c) There are no non-zero maps from right to left in the diagram.

Proof. (a), (b) Follow from previous discussion.

(c) If X, Y are indecomposable, Y is preprojective and X is not, then X ∼=
τ−mτmX for i ≥ 0. Thus

Hom(X, Y ) ∼= Hom(τ−mτmX, Y ) ∼= Hom(τmX, τmY ) = 0

for m� 0.

From now on we suppose that Q is extended Dynkin without oriented cycles.

Lemma 1. There is N > 0 such that ΦN dimX = dimX for regular X.

Proof. Zδ is an additive subgroup of ZQ0 . Since δ ∈ rad q,

∆ ∪ {0} = {α ∈ ZQ0 : q(α) ≤ 1}.

is a union of cosets of Zδ.

Let e be an extending vertex. If α ∈ ∆ ∪ {0}, then the coset of α contains
β = α− αeδ, a vector with βe = 0, which is either the zero vector, or a root
for the corresponding Dynkin quiver.

Thus the set of these cosets (∆ ∪ {0})/Zδ is finite,

Recall that Φα = α if and only if α is radical, and that q(Φα) = q(α). Thus
Φ induces a permutation of the finite set (∆ ∪ 0)/Zδ.

Thus there is some N > 0 with ΦN the identity on (∆∪0)/Zδ. Since ε[i] ∈ ∆
it follows that ΦN is the identity on ZQ0/Zδ.
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Let ΦN dimX−dimX = rδ. An induction shows that ΦmN dimX = dimX+
mrδ for all m ∈ Z. If r < 0 this is not positive for m � 0, so X must be
preprojective. If r > 0 this is not positive for m � 0, so X is preinjective.
Thus r = 0.

Lemma 2. An indecomposable module is preprojective, regular, or preinjec-
tive according to whether its defect is < 0, 0 or > 0.

Proof. We have seen that the preprojectives have defect < 0 and the prein-
jectives have defect > 0. Thus we must show that if X is regular, then
defect(X) = 0.

Say dimX = α. Then ΦNα = α. Let β = α + Φα + . . .ΦN−1α. Clearly
Φβ = β, so β = rδ. Now

0 = 〈β, δ〉 =
N−1∑
i=0

〈Φiα, δ〉 = N〈α, δ〉,

so 〈α, δ〉 = 0.

Lemma 3. Suppose α is a positive real root. If 〈δ, α〉 6= 0 or α ≤ δ, then
there is an indecomposable of dimension α.

If 〈δ, α〉 6= 0 then X is preprojective or preinjective, so a directing module,
so a brick without self-extensions, and the unique indecomposable of this
dimension vector.

Proof. Pick a module X of dimension α with dim End(X) minimal. We
show that if X decomposes, then 〈δ, α〉 = 0 and δ ≤ α, contrary to the
assumptions.

Say X = U ⊕ V . By minimality, Ext1(U, V ) = Ext1(V, U) = 0. Then

1 = q(α) = q(dimU) + q(dimV ) + dim Hom(U, V ) + dim Hom(V, U).

Thus, without loss of generality, q(dimU) = 0, so dimU ∈ Zδ, so δ ≤
α. Now q(dimV ) = q(α) = 1, so the Hom spaces must be zero. Thus
〈dimV, dimU〉 = 0, so 〈dimV, δ〉 = 0. Thus 〈α, δ〉 = 0.

4.6 Uniserial structure

We continue with A = KQ with Q extended Dynkin without oriented cycles.
Let C be the module class of regular modules.
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Lemma 1. C is exactly the defect-semistable modules, so is a wide module
class. Moreover τ and τ− define inverse equivalences from C to itself.

Proof. If X ∈ C is indecomposable and U is a submodule, then any indecom-
posable summand of U has a non-zero map U → X, so U is not preinjective,
so defect(U) ≤ 0. Now τ is fully faithful and dense as a functor C → C.

Definition. We have defined the notion of C-simple objects for a wide module
class C, hence “regular-simple modules”. We say that a regular module X is
regular-uniserial if if is uniserial in the abelian category of regular modules.
We can define the regular-top, regular-socle, a regular-composition series and
the regular-length of a regular module.

Example. Consider the ‘four subspace quiver’ of type D̃4

If dimX = α then defect(X) = 〈δ, α〉 = α1 + α2 + α3 + α4 − 2α5.

(a) The module S12 given by

is regular-simple. There are 6 modules like this, denoted Sij with 0 ≤ i <
j ≤ 4 where the vertices i and j are copies of K. The minimal projective
resolution of S12 is

0→ P [5]→ P [1]⊕ P [2]→ 0

so τS12 is given by the exact sequence

0→ τS12 → I[5]→ I[1]⊕ I[2]

so τS12
∼= S34.
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(b) If U, V,W,Z are distinct 1-dimensional subspaces of K2, then the module

is indecomposable and of defect 0, so regular, and it is regular-simple since
any proper non-trivial regular submodule N of dimension α must have α5 =
1, so two of α1, α2, α3, α4 must be 1 and two must be 0. But then N5 must
contain two of U, V,W,Z, so N5 = K2, a contradiction.

(c) Using the subspace W twice gives a module M via

(It is indecomposable since U, V,W already give an indecomposable repre-
sentation of the Dynkin quiver D4.) The module M is indecomposable and
regular. It fits into an exact sequence

that is, 0→ S34 →M → S12 → 0. This sequence shows the only proper non-
trivial regular submodule of M , so it is regular-uniserial. Since S34

∼= τS12

and Ext1(S12, S34) ∼= DEnd(S12) ∼= K, the exact sequence must be the AR
sequence ending at S12.

Lemma 2. If S is a regular-simple, then
(i) α = dimS is a root.
(ii) τ jS is regular-simple for all j ∈ Z.
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(iii) τS ∼= S iff dimS is an imaginary root.
(iv) τNS ∼= S

Proof. (i) S is a brick by Schur’s Lemma for the abelian category C, so
q(α) = dim End(S)− dim Ext1(S, S) ≤ 1.

(ii) Since τ and τ− are equivalences on the abelian category C, they send
regular-simples to regular-simples.

(iii) If τS ∼= S then Φα = α, so α is radical, so α = rδ is an imaginary root.

If α is an imaginary root, then Ext1(S, S) 6= 0, so Hom(S, τS) 6= 0. Since S
and τS are regular simples, Schur’s Lemma for the abelian category C implies
that S ∼= τS.

(iv) If α is a real root, then 〈α,ΦNα〉 = 〈α, α〉 = 1, so Hom(S, τNS) 6= 0, so
S ∼= τNS by Schur’s Lemma. If α is an imaginary root, it follows from (iii).

Lemma 3. If X is regular-uniserial, S is regular-simple and

ξ : 0→ S → E
f−→ X → 0

is non-split, then E is regular-uniserial.

Proof. Let T be the regular-socle of X. Now E is regular since C is closed
under extensions. It suffices to prove that if U ⊆ E is a regular submodule
and U is not contained in S, then S ⊆ U . Now we have f(U) 6= 0, so
T ⊆ f(U). Then f−1(T ) = S + U ∩ f−1(T ) by the modular law.

Since τ−S is regular-simple, the inclusion T ↪→ X gives an isomorphism
Hom(τ−S, T )→ Hom(τ−S,X). Thus it gives an isomorphism

Ext1(X,S) ∼= DHom(τ−S,X) ∼= DHom(τ−S, T ) ∼= Ext1(T, S),

so the pullback sequence

ζ : 0 −−−→ S −−−→ f−1(T ) −−−→ T −−−→ 0∥∥∥ y y
ξ : 0 −−−→ S −−−→ E −−−→ X −−−→ 0

is non-split. Thus the sum f−1(T ) = S + U ∩ f−1(T ), cannot be a direct
sum, so S ∩ U ∩ f−1(T ) 6= 0. Thus S ⊆ U .
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Lemma 4. For each regular-simple T and r ≥ 1 there is a unique regular-
uniserial module T{r} with regular-top T and regular-length r. Its regular-
composition factors are (from the top) T, τT, . . . , τ r−1T .

Proof. We work by induction on r. Suppose X = T{r} exists. Let S be
regular-simple. Now

Ext1(X,S) ∼= DHom(τ−S,X) ∼= DHom(τ−S, τ r−1T ) ∼=

{
K (S ∼= τ rT )

0 (otherwise)

so there is a non-split sequence ξ : 0 → S → E → X → 0 if and only
if S ∼= τ r−1T . Moreover in this case, since the space of extensions is 1-
dimensional, any non-zero ξ ∈ Ext1(X,S) gives rise to the same module
E. It is uniserial by the previous lemma, so it is T{r + 1}. Uniqueness is
straightforward.

Theorem. Every indecomposable regular module X is regular-uniserial (so
of the form T{r} for some T and r).

Proof. Induction on the dimension of X. If X is regular-simple there is
nothing to prove, so suppose otherwise. Let S ⊆ X be a regular-simple
submodule of X. Write the quotient as a direct sum of indecomposables

X/S =
r⊕
i=1

Yi

By induction the Yi are regular-uniserial. Now

Ext1(X/S, S) ∼=
r⊕
i=1

Ext1(Yi, S)

with the sequence 0 → S → X → X/S → 0 corresponding to (ξi). Since X
is indecomposable, all ξi 6= 0. Now

Ext1(Yi, S) ∼=

{
K (if regular-socle of Yi is τ−S)

0 (otherwise)

so all Yi have regular-socle t−S.

If r = 1 then X is regular uniserial, so suppose r ≥ 2 for contradiction.
We may assume that dimY1 ≤ dimY2, and then by the classification in
Lemma 4 of regular uniserials, there is an embedding g : Y1 ↪→ Y2. This
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induces an isomorphism Ext1(Y2, S)→ Ext1(Y1, S) so we can use g to adjust
the decomposition of X/S to make one component ξi zero, a contradiction.
Explicitly, we write X/S = Y ′1⊕Y2⊕· · ·⊕Yr with Y ′1 = {y1+λg(y1) : y1 ∈ Y1}
for some λ ∈ K.

Corollary. A regular simple T of τ -period p is contained in a component of
the AR quiver of the following shape

The dotted lines must be identified, to give a tube

In particular, for period 1, the component looks as follows

Every indecomposable regular module is contained in such a tube.

Proof. Details omitted.
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4.7 Regular-simples and roots

We continue with A = KQ with Q extended Dynkin without oriented cycles.
We show that the tubes are indexed by the projective line and the dimension
vectors of indecomposable modules are exactly the positive roots.

Let e be an extending vertex, P = P [e], p = dimP . Clearly 〈p, p〉 = 1 =
〈p, δ〉. Thus δ+p is a positive real root and 〈δ+p, δ〉 = 1, so there is a unique
indecomposable L of dimension δ + p. Now P and L are preprojective, are
bricks, and have no self-extensions.

Now Hom(L, P ) = 0, for if θ : L → P then Im θ is projective, so iso-
morphic to a summand of L, a contradiction. Also Ext1(L, P ) = 0 since
〈dimL, dimP 〉 = 〈p+δ, p〉 = 〈p, p〉−〈p, δ〉 = 0. Moreover dim Hom(P,L) = 2
since 〈p, p+ δ〉 = 2.

Example. For the quiver

with extending vertex e = 5, the preprojective component starts as follows
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Lemma 1. If 0 6= θ ∈ Hom(P,L) then θ is mono, Coker θ is a regular
indecomposable of dimension δ, and [reg-top(Coker θ)]e 6= 0.

Proof. Suppose θ is not mono. Now Ker θ and Im θ are preprojective (since
they embed in P and L), and so they have defect ≤ −1. Now the sequence

0→ Ker θ → P → Im θ → 0

is exact, so −1 = defect(P ) = defect(Ker θ) + defect(Im θ) ≤ −2, a contra-
diction.

Let X = Coker θ, and consider ξ : 0→ P
θ−→ L→ X → 0. Apply Hom(−, P )

to get Ext1(X,P ) = K. Apply Hom(−, L) to get Hom(X,L) = 0. Ap-
ply Hom(X,−) to get X a brick. If X has regular top T , then dimTe =
dim Hom(P, T ) = 〈p, dimT 〉 = 〈p+ δ, dimT 〉 = dim Hom(L, T ) 6= 0.

Lemma 2. If X is regular, Xe 6= 0 then Hom(Coker θ,X) 6= 0 for some
0 6= θ ∈ Hom(P,L).

Proof. Ext1(L,X) = 0, so

dim Hom(L,X) = 〈p+ δ, dimX〉 = 〈p, dimX〉 = dim Hom(P,X) 6= 0.

Let α, β be a basis of Hom(P,L). These give maps a, b : Hom(L,X) →
Hom(P,X).

If a is an iso, let λ be an eigenvalue of a−1b and set θ = β − λα. If a is not
an iso, let θ = α. Either way, there is 0 6= φ ∈ Hom(L,X) with φ ◦ θ = 0.
Thus there is an induced non-zero map φ : Coker θ → X.

Theorem 1.
(a) If S is regular simple of τ -period p, then

dimS + dim τS + · · ·+ dim τ p−1S = δ.

(b) Regular simples S, T of the same dimension α 6= δ must be isomorphic.
(c) All but finitely many regular simples have dimension δ, so all but finitely
many tubes have period 1.

Proof. (a) We show that α := dimS ≤ δ. If αe 6= 0, this holds since there is
a non-zero map Coker θ → S which must be onto. If αe = 0, then δ − α is a
root, and (δ − α)e = 1, so δ − α is a positive root, so again α ≤ δ.

If α = δ, then S ∼= τS, so p = 1 and we are done. Thus we may suppose α is
a real root. Now δ−α is a positive real root, so by §4.5 Lemma 3 there is an
indecomposable module R of dimension δ − α; regular since 〈δ, δ − α〉 = 0.
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As 〈α, δ−α〉 = −1, 0 6= Ext1(S,R) ∼= DHom(R, τS), so reg-topR ∼= τS. As
〈δ − α, α〉 = −1, 0 6= Ext1(R, S) ∼= DHom(τ−S,R), so reg-socR ∼= τ−S. It
follows that R must at least involve τS, τ 2S, . . . , τ p−1S, so

dimS + dim τS + · · ·+ dim τ p−1S ≤ dimS + dimR = δ.

Also the sum is invariant under Φ, so it is a multiple of δ.

(b) Hom(S, T ) 6= 0 since 1 = 〈α, α〉 = dim Hom(S, T ) − dim Ext1(S, T ), so
S ∼= T .

(c) There are only finitely many positive roots < δ.

Theorem 2. The set of tubes is in bijection with the projective line. Explicitly
(i) each tube contains a unique module in the set

Ω = {isoclasses of indecs X with dimX = δ and reg-top(X)e 6= 0}

(ii) There is a bijection, PHom(P,L)→ Ω, Kθ 7→ Coker θ, where PV denotes
the set of 1-dimensional subspaces of V .

Proof. (i) By Theorem 1(a), exactly one regular simple T in the tube has
Te 6= 0. Clearly Ω contains the module with regular top T and regular length
p, the period of T , and no other modules from the tube.

(ii) By Lemma 1, Coker θ ∈ Ω. Conversely if X ∈ Ω then by Lemma 2,
for some θ there is a non-zero map Coker θ → X. This must be surjective,
since any proper regular quotient of Coker θ is non-zero at e, but any proper
regular submodule of X is zero at e. Thus the map is an isomorphism.

If 0 6= θ, θ′ ∈ Hom(P,L) and Coker θ ∼= Coker θ′, then since Ext1(L, P ) = 0
one gets a commutative diagram

0 −−−→ P
θ′−−−→ L −−−→ Coker θ′ −−−→ 0

f

y g

y ∥∥∥
0 −−−→ P

θ−−−→ L −−−→ Coker θ −−−→ 0

Now f and g are non-zero multiples of the identity, so Kθ = Kθ′.

In the example before, the module L can be given by the indicated matrices,
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and then a map P → L is given by a linear map K → K2 as indicated

with a, b ∈ K not both zero. The cokernel is isomorphic to

where λ, µ ∈ K are not both zero and satisfy aλ + bµ = 0. This module is
regular simple unless (λ µ) is a multiple of one of the other maps, say (1 0),
when the module is not regular simple since it has regular submodule
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with quotient isomorphic to

Theorem 3.
(1) If X is indecomposable then dimX is a root.
(2) If α is a positive imaginary root there are infinitely many many indecom-
posable modules X with dimX = α.
(3) If α is a positive real root there is a unique indecomposable module X
with dimX = α.

Proof. (Omitted in the lecture.) (1) If X is a brick, this is clear. If X is not
a brick, it is regular. Let X have period p and regular length rp + q with
1 < q ≤ p. The regular submodule Y of X with regular length q is a brick,
and so dimX = dimY + rδ is a root.

(2) We have α = rδ. If T is a tube of period p, then the indecomposables
in T of regular length rp have dimension rδ, and there are infinitely many
tubes.

(3) We have proved this already in case 〈α, δ〉 6= 0, so suppose 〈α, δ〉 = 0.
We can write α = rδ+β for some real root β with 0 ≤ β < δ. We know that
there is a regular indecomposable Y of dimension β. Suppose it corresponds
to a module of regular-length q in a tube of period p. Then q < p. Let X
be the regular uniserial containing Y and with regular length rp+ q. Clearly
dimX = rδ + dimY = α.

Finally suppose that there are two regular-uniserials X, Y that have the
same dimension vector α, a real root. Then 〈dimX, dimY 〉 = q(α) = 1, so
Hom(X, Y ) 6= 0. Thus X and Y are in the same tube, say of period p. Since
α is not a multiple of δ, the regular-length of X is not a multiple of p. Thus
if S is the regular socle of X, we have Hom(S,X) 6= 0 and Ext1(S,X) = 0.
Thus 〈dimS, α〉 > 0. Thus Hom(S, Y ) 6= 0. Thus Y has regular socle S.
Thus since dimX = dimY we have X ∼= Y .
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