Algebra II

5. Übungsblatt

William Crawley-Boevey

Abgabe: Bis zum 17.05.24 um 10:00h im Postfach Ihres Tutors
[Sarah Meier: 129]

Aufgabe 5.1. $(1+2+1)$ Let R and S be rings. By definition an R - S-bimodule is an additive group M which is both a left R-module and a right S-module, such that $(r m) s=r(m s)$ for all $m \in M, r \in R$ and $s \in S$.
(i) The centre of an R - R-bimodule M is the set $Z_{R}(M)=\{m \in M: r m=m r \forall r \in R\}$. Show that it is an additive subgroup of M.
(ii) If X is an R-module, we write ${ }_{\mathbb{Z}} X$ for the underlying additive group (or equivalently, \mathbb{Z}-module). Suppose that X is a left S-module and Y is a left R-module. Show how to define actions of R and S so that $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} X, \mathbb{Z} Y)$ becomes an R - S-bimodule.
(iii) Show that if X and Y are left R-modules, then $Z_{R}\left(\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} X, \mathbb{Z} Y)\right)=\operatorname{Hom}_{R}(M, N)$.

Aufgabe 5.2. (2+2) (i) Find all submodules of the \mathbb{Z}-module $\mathbb{Z} / \mathbb{Z} 100$, and draw a diagram to show which submodules are contained in which others.
(ii) Show that $\mathbb{Z} / \mathbb{Z} 100 \cong(\mathbb{Z} / \mathbb{Z} 4) \oplus(\mathbb{Z} / \mathbb{Z} 25)$ as \mathbb{Z}-modules.
[Hint. Recall that $R=\mathbb{Z}$ is a principal ideal domain (Hauptidealbereich, Algebra I, §4.2), and that $R a \subseteq R b$ if and only if b is a divisor of a and $R a=R b$ if and only if a and b are associates (Algebra I, §4.3). See also the Chinese Remainder Theorem (chinesische Restsatz, Algebra I, §3.3.]

Aufgabe 5.3. $(2+2)$ An R-module is said to be artinian, or to have the descending chain condition on submodules, if any descending chain of submodules

$$
M_{1} \supseteq M_{2} \supseteq \ldots
$$

of M breaks off, that is, there is some n such that $M_{n}=M_{n+1}=\ldots$.
(i) Show that M is artinian if and only if any non-empty set of submodules of M has a minimal element.
(ii) Let N be a submodule of M. Show that M is artinian if and only if N and M / N are artinian.

Aufgabe 5.4. (2+2) (i) Show that if R is a principal ideal domain and $0 \neq a \in R$, then $R / R a$ is an artinian R-module.
(ii) Show that \mathbb{Z} and \mathbb{Q} are not artinian as \mathbb{Z}-modules.
[Hint. Use that a principal ideal domain is a unique factorization domain (Algebra I, §4.3).]

