Algebra II 6. Übungsblatt

William Crawley-Boevey Abgabe: Bis zum 24.05.24 um 10:00h im Postfach Ihres Tutors [Sarah Meier: 129]

Aufgabe 6.1. (1+1+1+1) Let R be a ring and let $x \in R$. We consider the following conditions:

- (a) xS = 0 for all simple *R*-modules *S*.
- (b) $x \in I$ for all maximal left ideals I in R.
- (c) 1 ax has a left inverse for all $a \in R$.
- (d) 1 ax is invertible for all $a \in R$.
- (i) Prove (a) \Rightarrow (b) [Hint. If I is a maximal ideal, R/I is a simple module.]

(ii) Prove (b) \Rightarrow (c) [Hint. If $r \in R$ does not have a left inverse, then Rr is a proper left ideal, so contained in a maximal left ideal.]

(iii) Prove (c) \Rightarrow (d) [Hint. If y is a left inverse for 1 - ax, then y = 1 + yax, and this also has a left inverse.]

(iv) Prove (d) \Rightarrow (a). [Hint. If S is a simple module and $xs \neq 0$ with $s \in S$, then Rxs = S, so $s \in Rxs$.]

Aufgabe 6.2. (2+2) The set J(R) of all x satisfying the equivalent conditions in Aufgabe 6.1 is called the *Jacobson radical* of R.

- (i) Show that J(R) is an ideal in R (that is, it is both a left ideal and a right ideal).
- (ii) Show that if R is a semisimple ring, then J(R) = 0.

Aufgabe 6.3. (2+2) Let R be a ring and let $x, a \in R$.

(i) If 1 - ax is invertible, with inverse y, show that 1 - xa is invertible, with inverse 1 + xya. Deduce that $J(R) = J(R^{op})$.

(ii) If x is nilpotent, that is $x^n = 0$ for some n > 0, show that 1 - x is invertible. Deduce that if I is an ideal in R and every element of I is nilpotent, then $I \subseteq J(R)$.

Mehr...

Aufgabe 6.4. (1+1+2)

(i) Show that if I is an ideal in R and $I \subseteq J(R)$, then J(R/I) = J(R)/I. [Hint. Consider the maximal left ideals in R.]

(ii) Let R be a ring and I a nilpotent ideal in R. Show that if R/I is semisimple, then J(R) = I.

(iii) Let K be a field and let $T_n(K)$ be the subalgebra of $M_n(K)$ consisting of the upper triangular matrices

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix}$$

with $a_{ij} \in K$. Show that $J(T_n(K))$ is the set of strictly upper triangular matrices (that is, upper triangular matrices with diagonal entries $a_{ii} = 0$).