Algebra II
 6. Übungsblatt

William Crawley-Boevey

Abgabe: Bis zum 24.05.24 um 10:00h im Postfach Ihres Tutors
[Sarah Meier: 129]

Aufgabe 6.1. $(1+1+1+1)$ Let R be a ring and let $x \in R$. We consider the following conditions:
(a) $x S=0$ for all simple R-modules S.
(b) $x \in I$ for all maximal left ideals I in R.
(c) $1-a x$ has a left inverse for all $a \in R$.
(d) $1-a x$ is invertible for all $a \in R$.
(i) Prove $(\mathrm{a}) \Rightarrow(\mathrm{b})$ [Hint. If I is a maximal ideal, R / I is a simple module.]
(ii) Prove (b) \Rightarrow (c) [Hint. If $r \in R$ does not have a left inverse, then $R r$ is a proper left ideal, so contained in a maximal left ideal.]
(iii) Prove $(\mathrm{c}) \Rightarrow(\mathrm{d})$ [Hint. If y is a left inverse for $1-a x$, then $y=1+y a x$, and this also has a left inverse.]
(iv) Prove (d) \Rightarrow (a). [Hint. If S is a simple module and $x s \neq 0$ with $s \in S$, then $R x s=S$, so $s \in R x s$.]

Aufgabe 6.2. $(2+2)$ The set $J(R)$ of all x satisfying the equivalent conditions in Aufgabe 6.1 is called the Jacobson radical of R.
(i) Show that $J(R)$ is an ideal in R (that is, it is both a left ideal and a right ideal).
(ii) Show that if R is a semisimple ring, then $J(R)=0$.

Aufgabe 6.3. $(2+2)$ Let R be a ring and let $x, a \in R$.
(i) If $1-a x$ is invertible, with inverse y, show that $1-x a$ is invertible, with inverse $1+x y a$. Deduce that $J(R)=J\left(R^{o p}\right)$.
(ii) If x is nilpotent, that is $x^{n}=0$ for some $n>0$, show that $1-x$ is invertible. Deduce that if I is an ideal in R and every element of I is nilpotent, then $I \subseteq J(R)$.

Aufgabe 6.4. $(1+1+2)$
(i) Show that if I is an ideal in R and $I \subseteq J(R)$, then $J(R / I)=J(R) / I$. [Hint. Consider the maximal left ideals in R.]
(ii) Let R be a ring and I a nilpotent ideal in R. Show that if R / I is semisimple, then $J(R)=I$.
(iii) Let K be a field and let $T_{n}(K)$ be the subalgebra of $M_{n}(K)$ consisting of the upper triangular matrices

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
0 & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & a_{n n}
\end{array}\right)
$$

with $a_{i j} \in K$. Show that $J\left(T_{n}(K)\right)$ is the set of strictly upper triangular matrices (that is, upper triangular matrices with diagonal entries $a_{i i}=0$).

