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Abstract. Let A be a finitely generated algebra over a field K of char-
acteristic p > 0. We introduce a subring W †(A) ⊂W (A), which we call
the ring of overconvergent Witt vectors and prove its basic properties.
In a subsequent paper we use the results to define an overconvergent de
Rham-Witt complex for smooth varieties over K whose hypercohomol-
ogy is the rigid cohomology.

Introduction

The p-adic cohomology of algebraic varieties may be defined using rings
of Witt vectors. Let X be a smooth quasi-projective scheme over a perfect
field K of characteristic p > 0. The Witt vectors may be considered as a
Zariski sheaf W (OX). The de Rham-Witt complex of Deligne-Illusie is a
complex of W (OX)-modules whose hypercohomology is the crystalline co-
homology of X. In [2] we constructed a subcomplex of the de Rham-Witt
complex whose hypercohomology is the rigid cohomology of X defined by
Berthelot [1]. For this we put a growth condition on Witt vectors which
is inspired by the work of Monsky and Washnitzer. Therefore we speak of
overconvergent Witt vectors. In this paper we study the rings of overcon-
vergent Witt vectors systematically and prove in particular all facts used
in [2]. Similiar growth conditions of Witt vectors were used by de Jong [4]
in his work on homomorphism of p-divisible groups and Kedlaya [6] in his
work on the Crew conjecture. We describe the precise relation below.

Let A be a finitely generated algebra over a field K of characteristic p.
Let W (A) be the ring of Witt vectors with respect to p. We define a subring
W †(A) ⊂ W (A) which we call the ring of overconvergent Wittvectors. Let
A = K[T1, . . . , Td] be the polynomial ring. We say that a Witt vector
(f0, f1, f2, . . .) ∈ W (A) is overconvergent, if there is a real number ε > 0
and a real number C such that

m− εp−m deg fm ≥ C, for all m ≥ 0.

The overconvergent Witt vectors form a subring W †(A) ⊂W (A).
There is a natural morphism from the ring of restricted power series

W (K){T1, . . . , Td} →W (A),

which maps Ti to its Teichmüller representative [Ti].
The inverse image of W †(A) is the set of those power series which con-

verge in some neighborhood of the unit ball. This is the weak completion
A† of W (K)[T1, . . . , Td] in the sense of Monsky and Washnitzer. We note
that the bounded Witt vectors used by Lubkin [9] are different from the
overconvergent Witt vectors.
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If A → B is a surjection of finitely generated K-algebras, we obtain by
definition a surjection of the rings of overconvergent Witt vectors

W †(A)→W †(B).

A much deeper fact that we use in [2] concerns subalgebras. Let A ⊂ B
be two smooth K-algebras. Then

W †(A) = W (A) ∩W †(B)

(see: Proposition 2.16). In particular this implies that the functor A 7→
W †(A) is a sheaf for the smooth topology.

Further we show (see Corollary 2.46): LetA be a finitely generated algebra
over K. Let B = A[T ]/(f(T )) be a finite étale A-algebra, where f(T ) ∈ A[T ]
is a monic polynomial of degree n, such that f ′(T ) is a unit in B.

We denote by t the residue class of T in B. Then W †(B) is finite and
étale over W †(A), and the elements 1, [t], [t]2 . . . , [t]n−1 form a basis of the
W †(A)-module W †(B).

Finally we prove that W †(A) → A satisfies Hensel’s lemma (see Propo-
sition 2.30), if A is a finitely generated algebra over a perfect field K. The
essential fact is that A is a weakly complete algebra over K in the sense of
Monsky-Washnitzer.

Now we decribe the relation with the work of de Jong and Kedlaya who
studied the slope filtration of isocrystals over overconvergent Witt vectors
of perfect fields with a valuation. Let K be a finite extension of Qp. Let
O = OK be the ring of integers, π ∈ O a prime element and q = pe be the
number of elements in O/(π).

Let R be an O-algebra. Using the Witt polynomials

wn = Xqn

0 + πXqn−1

1 + . . . πn−1Xq
n−1 + πnXn,

one [3] defines the ring of ramified Witt vectors WO(R).
Assume that πR = 0 and we are given a valuation ν : R → R ∪ {∞}.

A Witt vector (x0, x1, x2, . . .) ∈WO(R) is called overconvergent if there are
real numbers ε > 0 and C such that

i+ εν(xi) ≥ C, for i ∈ Z≥0,

The overconvergent Witt vectors form a ring W †O(R). If R is a perfect field
L of characteristic p this ring is denoted by Wcon(L,O) in Kedlaya [6]. If
K = Qp and R is a polynomial algebra over a field with its degree valuation
we obtain the ring W †(R) described above. Since our aim is to lay the
foundations for the overconvergent de Rham-Witt complex we consider only
the case K = Qp. But all our results hold for ramified Witt vectors as well.

1. Pseudovaluations

We set R̄ = R ∪ {∞} ∪ {−∞} with its natural order.

Definition 1.1. Let A be an abelian group. An order function is a function

ν : A→ R̄,
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such that ν(0) =∞ and such that for arbitrary a, b ∈ A:

ν(a± b) ≥ min{ν(a), ν(b)}.

An order function is the same thing as a decending filtration of A by
subgroups F rA indexed by r ∈ R̄, with the property ∩s<rF sA = F rA. The
relation of both notions is F r(A) = {a ∈ A | ν(a) ≥ r}.

In particular the inequality above is an equality if ν(a) 6= ν(b). Moreover
we have ν(a) = ν(−a).

Let φ : A → B be a surjective homomorphism of abelian groups. Then
we define the quotient ν̄ : B → R̄ by:

(1.2) ν̄(b) = sup{ν(a) | a ∈ A, φ(a) = b}.

This is again an order function.
We define an order function νn on the direct sum An as follows:

(1.3) νn((a1, . . . , an)) = min
i
{ν(ai)}.

Definition 1.4. Let A be a ring with 1. A pseudovaluation ν on A is an
order function on the additive group

ν : A→ R̄

such that the following properties hold

1) ν(1) = 0,
2) ν(ab) ≥ ν(a) + ν(b), if ν(a) 6= −∞ and ν(b) 6= −∞.

We call ν proper if it doesn’t take the value −∞. We call ν negative
if ν is proper and ν(a) ≤ 0 for all a ∈ A, a 6= 0. If ν is proper and 2)
is an equality, ν is called a valuation. On each ring A we have the trivial
valuation: ν(a) = 0 for a 6= 0.

If φ : A→ B is a surjective ring homomorphism. Let ν be a pseudovalu-
ation on A. Let ν̄ the induced order function on B. If ν̄(1) 6= ∞ then ν̄ is
a pseudovaluation. In particular this is the case if ν is negative.

Example 1: Let R be a ring with a negative pseudovaluation µ. Consider
the polynomial ring A = R[T1, . . . Tm]. Let d1 > 0, . . . , dm > 0 be real
numbers. Then we define a valuation on A as follows: For a polynomial

f =
∑
k

ckT
k1
1 · . . . · T

km
m

we set

(1.5) ν(f) = inf{µ(ck)− k1d1 − . . .− kmdm}.

This is a valuation if µ is a valuation. We often consider the case where R
is an integral domain and µ is the trivial valuation. If moreover di = 1 we
call ν the standard degree valuation.

We are interested in pseudovaluations up to equivalence:
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Definition 1.6. Let ν1, ν2 : A → R ∪∞ be two functions such that νi 6= 0
for all a ∈ A. We say that they are linearly equivalent, if there are real
numbers c1 > 0, c2 > 0, d1 ≥ 0, d2 ≥ 0 such that for all a ∈ A:

ν1(a) ≥ c2ν2(a)− d2

ν2(a) ≥ c1ν1(a)− d1

In Example 1 (1.5) we obtain for different choices of the numbers di
linearly equivalent negative pseudovaluations. The equivalence class of ν
doesn’t change if we replace µ by an equivalent negative pseudovaluation.

Let ν1 and ν2 be two negative pseudovaluations on A. If A → B is
a surjective ring homomorphism, then the quotients ν̄1 and ν̄2 are again
linearly equivalent.

Proposition 1.7. Let µ be a negative pseudovaluation on a ring R. We
consider a surjective ring homomorphism φ : R[T1, . . . , Tm]→ R[S1, . . . , Sn].
Let νT be a pseudovaluation on R[T1, . . . , Tm] and let νS be a pseudovaluation
on R[S1, . . . , Sn] as defined by (1.5). Then the quotient of νT with respect
to φ is a pseudovaluation which is linearly equivalent to the valuation νS.

We omit the straightforward proof which is essentially contained in [12].
A proof in a more general context is given in [2].

Definition 1.8. Let µ be a negative pseudovaluation on a ring R. Let B be a
finitely generated R-algebra. Choose an arbitrary surjection R[T1, . . . , Tm]→
B and an arbitrary degree valuation ν on R[T1, . . . Tm]. Then the quotient ν̄
on B, is up to linear equivalence independent of these choices. We call any
negative pseudovaluation in this equivalence class admissible.

Let µ be an admissible pseudovaluation on a finitely generated R-algebra
B. Let ν be the pseudovaluation on a polynomial algebra B[T1, . . . , Tm]
given by Example 1. Then ν is admissible. This it is easily seen, if we write
B as a quotient of a polynomial algebra.

Lemma 1.9. Let (R,µ) be a ring with a negative pseudovaluation. Let A be
an R-algebra which is finite and free as an R-module. Let τ be an admissible
pseudovaluation on A.

Choose an R-module isomorphism Rn ∼= A. With respect to this isomor-
phism τ is linearly equivalent to the order function µn given by (1.3).

Proof. Let e1, . . . , en be a basis of A as an R-module. Consider the natural
surjection:

α : R[T1, . . . , Tn]→ A

such that α(Ti) = ei. We have equations:

eiej =
n∑
l=1

c
(l)
ij el, c

(l)
ij ∈ R.

We choose a number d, such that for all coefficients c(l)ij :

µ(c(l)ij ) + d ≥ 0.
Let τ̃ be the pseudovaluation (1.5) on R[T1, . . . , Tn], such that τ̃(Xi) = −d.
We can take for τ the quotient of τ̃ .
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Consider an element a ∈ A. We choose a representative of a:

f =
∑
k

rkT
k1
1 · . . . · T

kn
n .

We claim that there is a linear polynomial f1 which maps to a, such that

τ̃(f1) ≥ τ̃(f).

Indeed, assume that some of the monomials rkT k11 · . . . · T kn
n is divisible by

TiTj . We will pretend in our notation that i 6= j, but the other case is the
same. We find an equation

rkT
k =

∑
l

rkc
(l)
ij T

k(l),

where |k(l)| = |k| − 1. We find for any fixed l:

τ̃(rkc
(l)
ij T

k(l)) = µ(rkc
(l)
ij )− d(|k| − 1) ≥ µ(ak) + µ(c(l)ij ) + d− d|k| ≥ τ̃(f).

We conclude that

(1.10) τ(a) = sup{τ̃(f) | f = r0 + r1T1 + . . .+ rnTn, α(f) = b}.

By construction a has a unique representative

g =
n∑
i=1

siTi.

Clearly τ̃ restricted to linear forms as above is linearly equivalent to the
order function µn defined by (1.3). We need to compare τ̃(g) and τ(a).

We have a relation in A:

1 =
n∑
i=1

ciei, ci ∈ R.

Given a representative f as in (1.10) we find:

g =
n∑
i=1

(ri + cir0)Ti.

Then we find:
τ̃(g) = min{µ(ri + cir0)− d} ≥ mini{min{µ(ri)− d, µ(ci)− d+ µ(r0)}}

≥ τ̃(f)− d′,

where d′ is chosen such that −d′ < µ(ci)− d. Since this is true for arbitrary
f we find τ̃(g) ≥ τ(b)−d′. Since τ is the quotient norm we have the obvious
inequality

τ(b) ≥ τ̃(g).

This completes the proof. �

Example 2: Let ν be a negative pseudovaluation on A. Let d > 0 a real
number. Then we have defined a pseudovaluation on the polynomial algebra
A[X]:

(1.11) µ(
∑

aiX
i) = min{ν(ai)− id}.
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Let f ∈ A, such that f is not nilpotent. Then we define a pseudovaluation
ν ′ on the localization Af by taking the quotient under the map:

A[X]→ Af ,

which sends X to f−1. As we remarked above ν ′ depends only on the linear
equivalence class of ν on A.

Let z ∈ Af . Consider all possible representations of z in the form:

(1.12) z =
∑
l

al/f
l.

Then ν ′ is the supremum over all these representations of the following
numbers:

(1.13) min
l
{ν(al)− ld}.

If the supremum is assumed we call the representation optimal.

Lemma 1.14. Let (A, ν) be a ring with a negative pseudovaluation. Let
f ∈ A be a non-zero divisor. Let ν ′ be the induced pseudovaluation on Af
which is associated to a fixed number d > 0.

We are going to define a function τ : Af → R ∪ {∞}. For z ∈ Af we
consider the set of all possible representations

(1.15) z = a/(fm).

We define τ(z) to be the maximum of the numbers ν(a)−md for all possible
representations (1.15).

Then there is a real constant Q > 0 such that for all z ∈ Af
ν ′(z) ≥ τ(z) ≥ Qν ′(z).

Proof. The first of the asserted inequalities is trivial. Consider any repre-
sentation:

z =
m∑
l=0

ul/(f l) such that um 6= 0.

We set
−C = min

l
{ν(ul)− ld}.

We note that this implies that −C ≤ −md. We find a representation of the
form (1.15):

z = (
m∑
l=0

ulf
m−l)/(fm) = a/fm.

We find:
ν(a)−md = ν(

∑m
l=0 ulf

m−l)−md ≥ minl{ν(ul) + (m− l)ν(f)−md}
≥ minl{ν(ul)− ld−md+mν(f) + l(d− ν(f))}
≥ minl{−C − C +mν(f)}.

We have further:

mν(f) = (−dm)
ν(f)
−d

≥ (−C)
ν(f)
−d

.

Together we obtain:

ν(a)−md ≥ −C(2 +
ν(f)
−d

).
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This implies:

τ(a/fm) ≥ (2 +
ν(f)
−d

)ν ′(z).

�

The motivation for the following definition is Lemma 2.14 below.

Definition 1.16. Let (A, ν) be a ring with a negative pseudovaluation. We
say that a non-zero divisor f ∈ A is localizing with respect to ν, if there are
real numbers C > 0 and D ≥ 0, such that for all natural numbers n:

(1.17) ν(fnx) ≤ Cν(x) + nD, for all x ∈ A.

If µ is a negative pseudovaluation on A, which is linearly equivalent to ν
then f is localizing with respect to ν, iff it is localizing with respect to µ.
Indeed any function ρ linearly equivalent satisfies an inequality (1.17).

It is helpful to remark that making C smaller we may always arrange that
D is smaller than any given positive number. It is also easy to see that a
unit of the ring A is always localizing.

Let A = R[T1, . . . , Te] be a polynomial ring over an integral domain R
with a degree valuation ν. Then we have the equation:

ν(fnx) = ν(x) + nν(f), x ∈ A.
Therefore (1.17) holds with C = 1 and D = 0.

More generally, let (B,µ) a ring with a negative pseudovaluation. We
endow A = B[T ] with the natural extension ν of µ such that ν(T ) = −d.
Assume that f = Tm + am−1T

m−1 + . . . + a0 is a monic polynomial with
ai ∈ B.

Definition 1.18. We say that f is regular with respect to T , if

(1.19) min
0≤i<m

{µ(ai)− id} > −md.

For a regular polynomial we have ν(f) = −md. We remark that each
monic polynomial f becomes regular for a suitable choice of d.

Proposition 1.20. Let f(T ) ∈ B[T ] be a regular polynomial (1.18). Then
we have for an arbitrary polynomial g(T ) ∈ B[T ] that

ν(f(T )g(T )) = ν(f(T )) + ν(g(T )).

In particular any monic polynomial in B[T ] is localizing.

Proof. We write

g =
n∑
k=0

bkT
k.

Let k0 be the largest index such that ν(g) = ν(bk0) − k0d. fg contains the
monomial

(bk0 + bk0+1am−1 + . . .)Tm+k0 .

We find by (1.19) that

µ(bk0+iam−i) ≥ µ(bk0) + µ(am−i) ≥ µ(bk0)− id.
On the other hand we have by the choice of k0 that

µ(bk0)− k0d < µ(bk0+i)− (i+ k0)d.
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This proves that µ(bk0+iam−i) > µ(bk0). Therefore we obtain that

µ(bk0 + bk0+1am−1 + . . .) = µ(bk0).

This shows the inequality:

ν(fg) ≤ ν(bk0)− d(m+ k0) = ν(g)−md = ν(g) + ν(f).

The opposite inequality is obvious. The last assertion follows because any
monic polynomial is regular for a suitable chosen d. �

Proposition 1.21. Assume that f = Tm + am−1T
m−1 + . . .+ a0 ∈ B[T ] is

a polynomial which is regular with respect to T . Each z ∈ Af has a unique
representation:

(1.22) z =
∑
l

ul/f
l, ul ∈ B[T ],

where ul is for l > 0 a polynomial of degree strictly less than m = deg f .
Then the representation (1.22) is optimal (compare (1.13)).

Proof. The first assertion follows from the euclidian division. Consider any
other representation

z =
∑
i

vi/f
i, vi ∈ B[T ],

Assume that n = deg vi ≥ m for some i > 0. Let c ∈ B be the highest
coefficient of the polynomial vi and set t = n−m. Then we conclude:

ν(cT tf) ≥ µ(c) + ν(T t) + ν(f) = µ(c) + ν(T t) + ν(Tm) = ν(cTn) ≥ ν(vi).

We write:
vi/f

i = ((vi − cT tf)/f i)− (cT t/f i−1).
If we insert this in the representation (1.12) the number (1.13) becomes
bigger because:

ν((vi − cT tf) ≥ ν(vi), ν(cT t) ≥ ν(cTn) ≥ ν(vi).

Continuing this process proves the lemma. �

The last Proposition applies in particular to a polynomial ring over a
field A = K[T1, . . . , Te] with the standard degree valuation. By Noether
normalization any polynomial becomes regular with respect to some variable
after a coordinate change.

Proposition 1.23. Let (A, ν) be a ring with a pseudovaluation. Let f, g ∈
A. Then fg is localizing iff f and g are localizing.

Proof: Assume fg is localizing. Then we find an inequality:

ν(fngnx) ≤ Cν(x) + nD.

On the other hand we have the inequality:

nν(f) + ν(gnx) ≤ ν(fngnx).

This shows that:
ν(gnx) ≤ Cν(x) + n(D − ν(f)).

We leave the opposite implication to the reader.
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Proposition 1.24. Let (A, ν) be a ring with a pseudovaluation. Assume
that A is an integral domain, such that each non-zero element of A is lo-
calizing. Let A → B be a finite ring homomorphism such that B is a free
A-module. Let µ be an admissible pseudovaluation on B. Then any nonzero
divisor in B is localizing with respect to µ.

Proof. We choose an isomorphism of A-modules: Ar ∼= B. By Lemma 1.9
the order function νr on Ar is linearly equivalent to an admissible pseu-
dovaluation on B. Let f ∈ A, f 6= 0. Then an inequality (1.17) holds. It
follows that for each z ∈ Ar:

νr(fnz) ≤ Cνr(z) + nD.

This shows that f is localizing in B. More generally consider a non-zero
divisor b ∈ B. Consider an equation of minimal degree:

bt + at−1b
t−1 + . . .+ a1b+ a0 = 0, ai ∈ A.

Then a0 6= 0 and therefore localizing. But a0 is a multiple of b in the ring
B. Therefore b is localizing in B by Proposition 1.23. �

Corollary 1.25. Let X → SpecK be a smooth scheme over a field K of
characteristic p. Then any point of X has an affine neighbourhood SpecA,
such that any non-zero element in A is localizing.

Proof. This is immediate from a result of [5] which says that each point
admits a neighbourhood which is finite and étale over an affine space An

K . �

Let us assume that f ∈ A is localizing with constants C,D given by
(1.17). Then we will assume that the constant d used in the definition of ν ′

on Af is bigger than D. This can be done with no loss of generality because
the equivalence class of ν ′ doesn’t depend on d.

Proposition 1.26. Let (A, ν) be a ring with a negative pseudovaluation.
Let f ∈ A be a localizing element. Each z ∈ Af has a unique representation

z = a/fm, where a ∈ A, f - a.
We define a real valued function σ on Af :

σ(z) = ν(a)−md.
Then there exists a real constant E > 0, such that:

ν ′(z) ≥ σ(z) ≥ Eν ′(z).
In particular, the restriction of ν ′ to A is linearly equivalent to ν.

Proof. By Lemma 1.14 it suffices to show the last inequality with ν ′ replaced
by τ . All representations (1.15) of z are of the form:

af r/fm+r.

Since f is localizing there are real numbers 1 > C > 0 and D ≥ 0 such that:

ν(af r)− (m+ r)d ≤ Cν(a) + rD −md− rd
≤ C(ν(a)−md) + (D − d)r ≤ Cσ(z) + (D − d)r.

We may assume that d ≥ D. Then the inequality above implies

τ(z) ≤ Cσ(z).

�
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Corollary 1.27. Let (B,µ) be an integral domain with a pseudovaluation
µ. Assume that each non-zero element is localizing. We endow B[T ] with a
pseudovaluation of Example 1.

Then each non-zero element in B[T ] is localizing.

Proof. Clearly each b ∈ B, b 6= 0 is localizing in B[T ]. By the Proposition
it suffices to find for a given f ∈ B[T ] an element b ∈ B, such that f
is localizing in Bb[T ]. By the remark preceding Proposition 1.20 we may
assume that f is a regular polynomial. Then we can apply this proposition.

�

The following corollary would allow to prove Corollary 1.25 more generally
by considering standard étale neighbourhoods instead of Kedlaya’s result.

Corollary 1.28. Let (A, ν) be a noetherian ring with a negative pseudoval-
uation. Let a, f ∈ A be two localizing elements. Then a is localizing in
Af .

Proof. By the Lemma of Artin-Rees there is a natural number r, such that
for m ≥ r

ax ∈ fmA implies x ∈ fm−rA.
Assume that x ∈ A, but x /∈ fA. Then we conclude that for each n ∈ N

anx ∈ fmA implies m ≤ nr.

Consider a reduced fraction x/fm ∈ Af . To show that a is localizing it
suffices to find an estimation for

σ(an(x/fm)),

where σ is the function of Proposition 1.26:

σ(x/fm) = ν(x)−md.

By the remarks above we may write with y /∈ fA:

anx

fm
=
yfs

fm
, s ≤ nr.

Using this equation we obtain:

ν(y) ≤ ν(yfs)− ν(f s) ≤ ν(anx)− sν(f)
≤ Cν(x) + nD − nrν(f).

Here C ≤ 1, D are positive real constants, which exists because a is localizing
in A.

Now it is easy to give an estimation for

σ(an(x/fm)) = σ(yfs/fm).

We omit the details. �

We reformulate Proposition 1.26 in the case where A = R[T1, . . . , Te] is
a polynomial algebra over an integral domain R with the standard degree
valuation ν. It extends to a valuation on the quotient field of A which we
denote by ν too. Let f ∈ A be a non-zero element. We define ν ′ on Af
associated to d > 0 as before (1.13).
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We define a second pseudovaluation µ on the ring Af as follows. Let ϑ(z)
be the smallest integer n ≥ 0 such that fnz ∈ A. We set:

(1.29) µ(z) = min{ν(z),−dϑ(z)}

Proposition 1.30. Let A be a polynomial ring with the standard degree
valuation ν. Let f ∈ A be a non constant polynomial. Let us define pseu-
dovaluations ν ′ resp. µ on Af by the formulas (1.13) resp. (1.29). Then
there are constants Q1 and Q2, such that

Q1µ ≥ ν ′ ≥ Q2µ.

Proof. We write an element z ∈ Af as a reduced fraction

z = (a/fm),

such that m = ϑ(z). By Proposition 1.26 it is enough to compare µ with
the function σ. The inequality σ(z) ≤ µ(z) is obvious. We show that for a
sufficiently big number C > 1:

Cµ(z) ≤ ν(a)−md.

This is obvious if −Cmd ≤ −md + ν(a). Therefore we can make the as-
sumption:

−(C − 1)md ≥ ν(a).

We have to find C such that the following inequality is satisfied:

C(ν(a)−mν(f)) ≤ ν(a)−md.

We have by assumption:

(C − 1)ν(a) ≤ −(C − 1)2md.

Therefore it suffices to show that for big C:

−(C − 1)2md ≤ m(Cν(f)− d).

But this is obvious. �

2. Overconvergent Witt vectors

Let us fix a prime number p. We are going to introduce the ring of
overconvergent Witt vectors. Let A be a ring with a proper pseudovaluation
ν. We assume that pA = 0.

Let W (A) be the ring of Witt vectors. For any Witt vector

α = (a0, a1, a2, . . .) ∈W (A)

we consider the following set T (α) in the x− y-plane:

(p−iν(ai), i), ν(ai) 6=∞.

For ε, c ∈ R, ε > 0 we consider the half plane:

Hε,c = {(x, y) ∈ R2 | y ≥ −εx+ c}.

Moreover we consider for all c ∈ R the half plane:

Hc = {(x, y) ∈ R2 | x ≥ c}.
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Let H the set of all half planes of the two different types above. We define
the Newton polygon NP(α):

NP(α) =
⋂

H∈H,T (α)∈H

H.

Definition 2.1. We say that a Witt vector α has radius of convergence
ε > 0, if there is a constant c ∈ R, such that

i ≥ −εp−iν(ai) + c.

We denote the set of these Witt vectors by W ε(A).

Equivalently one may say that the Newton polygon NP(α) lies above a
line of slope −ε.

We define the Gauss norm γε : W (A)→ R:

(2.2) γε(α) = inf{i+ εp−iν(ai)}

Convergence of radius ε > 0 means that γε(α) 6= −∞. We will denote the
set of Witt vectors of radius of convergence ε by W ε(A).

Proposition 2.3. Let (A, ν) a ring with a proper pseudovaluation, such
that pA = 0. Then for any ε > 0 the Gauss norm γε is a pseudovaluation
on W (A). In particular W ε(A) is a ring.

If we assume moreover that ν is a valuation, we have the equality for
arbitrary ξ, η ∈W ε(A):

(2.4) γε(ξη) = γε(ξ) + γε(η).

Proof. Clearly we may assume ε = 1. We set γ = γ1. The first two require-
ments of Definition 1.4 are clear. Consider two Wittvectors:

ξ = (a0, a1, . . .) ∈W (A), η = (b0, b1, . . .) ∈W (A).

We begin to show the inequality:

γ(ξ + η) ≥ min{γ(ξ), γ(η)}.

We may assume that there is g ∈ R, such that

i+ p−iν(ai) ≥ g, i+ p−iν(bi) ≥ g.

We write
ξ + η = (s0, s1, . . .).

Let Sm be the polynomials, which define the addition of the Witt vectors:

sm = Sm(a0, . . . , am, b0, . . . , bm).

We know that Sm is a sum of monomials

M = ±ae00 · . . . · a
em
m bf00 · . . . · b

fm
m ,

such that
m∑
i=0

piei +
m∑
i=0

pifi = pm.



OVERCONVERGENT WITT VECTORS 13

We have to show that p−mν(m) +m ≥ g. We compute:

p−mν(M) +m

≥ p−m(
∑m

i=0 eiν(ai) +
∑m

i=0 fiν(bi)

+
∑m

i=0 p
ieim+

∑m
i=0 p

ifim)

≥ p−m(
∑m

i=0 p
iei(p−iν(ai) + i) +

∑m
i=0 p

ifi(p−iν(bi) + i))

≥ p−m(
∑m

i=0 p
ieig +

∑m
i=0 p

ifig) ≥ g.
This proves the fourth requirement of Definition 1.4.

Next we prove the inequality:

(2.5) γ(ξη) ≥ γ(ξ) + γ(η).

By the inequality already shown we are reduced to the case

ξ = V i
[a], and η = V j

[b].

Since by assumption F and V commute on W (A) we find

ξη = V i+j
[ap

j
bp

i
].

We obtain:

(2.6)
γ(ξη) = ν(apj

bp
i
)

pi+j + i+ j

≥ pjν(a)+piν(b)
pi+j + i+ j = γ(ξ) + γ(η).

This proves that γ is a pseudovaluation.
Finally we prove the equality (2.4) if ν is a valuation. We remark that

(2.6) is an equality in this case. From this we obtain (2.4) in the case where

ξ = V i
[a] + ξ1, η = V j

[b] + η2,

where ξ1 ∈ V i+1W (A), η ∈ V j+1W (A) and

γ(ξ1) ≥ γ( V i
[a]), γ(η2) ≥ γ( V j

[b]).

Next we consider the case if there are i and j such that

p−iν(ai) + i = γ(ξ), p−jν(bj) + j = γ(η).

We assume that i and j are minimal with this property. Then we write

ξ = (a0, . . . , ai−1, 0, . . .) + ξ1 = ξ′ + ξ1
η = (b0, . . . , bj−1, 0, . . .) + η1 = η′ + η1.

Then we have by our choice:

γ(ξ′) > γ(ξ) = γ(ξ1), γ(η′) > γ(η) = γ(η1).

By the case already treated we have γ(ξ1η1) = γ(ξ1) + γ(η1). Then we
obtain:
(2.7)
γ(ξη) = γ(ξ1η1+ξ1η′+ξ′η1+ξ′η′) ≥ min{γ(ξ1η1)+γ(ξ1η′)+γ(ξ′η1)+γ(ξ′η′)}.
But by the inequality (2.5) this minimum is assumed only for γ(ξ1η1) and
therefore (2.7) is an equality.

Finally if i and j as above don’t exist this becomes true if we replace ε by
any δ which is a little smaller. If δ approaches ε we obtain the result. �
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We have the formulas:

(2.8)
γε( V α) = 1 + γε/p(α)
γε( Fα) ≥ γpε(α)
γε(p) = 1.

Definition 2.9. The union of the rings W ε(A) for ε > 0 is called the ring
of overconvergent Witt vectors W †(A).

Corollary 2.10. Let α ∈ W †(A) and let δ > 0 a real number. Then there
is an ε > 0 such that γε(α) > −δ.

Proof. Take some negative line of slope −τ below the Newton polygon of α.
If this line does not meet the negative x-axis we conclude that γτ (α) ≥ 0.
In the other case we rotate the line around the intersection point to obtain
the desired slope −ε. �

We will from now on assume that the pseudovaluation ν on A is negative.
Then we have:

W δ(A) ⊂W ε(A), if δ > ε.

By proposition 2.3 this is a subring.
The ring W †(A) does not change if we replace ν by a linearly equivalent

pseudovaluation. More generally let f : A → R ∪ {∞} be any function
which is linearly equivalent to ν. Then a Witt vector (x0, x1, . . .) ∈ W (A)
is overconvergent with respect to the ν, iff there is an ε > 0 and a constant
C ∈ R such that for all i ≥ 0.

i+ pif(xi)ε ≥ −C.
With the notation of Definition 1.8 let A be a finitely generated alge-

bra over (R,µ). Any admissible pseudovaluation on A leads to the same
ring W †(A). Let α : A → B be a homomorphism of finitely generated R-
algebras. Then the induced homomorphism on the rings of Witt vectors
respects overconvergent Witt vectors:

(2.11) W (α) : W †(A)→W †(B).

This is seen by choosing a diagram

R[T1, . . . , Tn] //

��

R[T1, . . . , Tn, S1, . . . , Sm]

��
A // B.

On the truncated Witt vectors we consider the functions γε[n]:

γε[n] : Wn+1(A)→ R ∪ {∞}

γε[n](α) = min{i+ εp−iν(ai) | i ≤ n}.
This is the quotient of γε under the natural map W (A) → Wn+1(A) in the
sense of (1.2). We conclude that γε[n] is a proper pseudovaluation.

The following is obvious: Let
∑∞

m=0 αm be an infinite sum of Witt vectors
αm ∈ W (A), which converges in the V -adic topology to σ ∈ A. Let ε > 0
and C ∈ R, such that

γε(αm) ≥ C.
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Then σ is overconvergent, and we have γε(σ) ≥ C.
More generally we can consider families of pseudovaluations δε[n] of W (A)

which are indexed by real numbers ε > 0 and n ∈ N ∪ {∞}. We write
δε = δε[∞]. We require that

δε1 [n] ≥ δε2 [n] ε1 ≤ ε2.
δε[n] ≥ δε2 [m] n ≤ m.

Definition 2.12. Two families δε[n] and δ′ε[n] as above are called equiva-
lent, if there are constants c1, c2, d1, d2 ∈ R, where c1 > 0, c2 > 0, such that
for sufficiently small ε the following inequalities hold:

δc1ε[n] ≥ δ′ε[n]− d1

δ′c2ε[n] ≥ δε[n]− d2.

Let ν and ν ′ be negative pseudovaluations on A, which are linearly equiv-
alent. Then the families γε and γ′ε of Gauss norms defined by (2.2) are
equivalent.

We obtain from Lemma 1.9.

Proposition 2.13. Let (R,µ) be a ring with a negative pseudovaluation.
Let A be an R-algebra which is free as an R-module. Let τ an admissible
pseudovaluation on A given by Proposition 1.7.

We transport µn to A by an isomorphism Rn ∼= A. Then a Witt vector
(a0, a1, . . . ) ∈W (A) is overconvergent with respect to τ , iff there is an ε > 0
and a constant C ∈ R such that:

i+ p−iµn(ai) ≥ −C.
In particular a Witt vector r = (r0, r1, . . .) ∈ W (R) is overconvergent iff its
image in W (A) is overconvergent.

Proof. Only the last sentence needs a justification. Assume r is overconver-
gent in A. By the first part of the Proposition this means the following:

Let ei be a basis of the R-module A. we write:

1 =
∑
m

cmem, cm ∈ R.

Then overconvergence means that there are constants ε > 0 and C ∈ R,
such that for 1 ≤ m ≤ n and i ≥ 0

i+ p−iµ(cmri)ε ≥ C.
By Cohen-Seidenberg it is clear that cm generate the unit ideal in R:

1 =
∑
m

cmum.

This gives

µ(ri) ≥ min{µ(cmri) + µ(ui)} ≥ min{µ(cmri)} − C ′.
for some constant C ′, which depends only on the elements um. Therefore
we see that r ∈ W †(R). We leave the inclusion W †(R) ⊂ W †(A) to the
reader. �

Lemma 2.14. Assume that f ∈ A is localizing. Let c ∈ W (A) be a Witt
vector such that c ∈W †(Af ). Then c ∈W †(A).
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Proof. We write c = (c0, c1, c2, . . .), where ci ∈ A. By Lemma 1.14 we find
representations ci = ai/f

mi , and real numbers ε > 0 and U , such that

i+ p−iε(ν(ai)−mid) ≥ −U.
Since f is localizing we find:

ν(ai) = ν(fmici) ≤ Cν(ci) +miD,

and therefore

−U ≤ i+ p−iε(Cν(ci) +mi(D − d)) = i+ p−iεCν(ci) + p−iεmi(D − d).

By our choice D < d the last summand is not positive. This shows that
c ∈W †(A). �

Proposition 2.15. Let (A, ν) be an integral domain with a negative pseu-
dovaluation, such that any non-zero element is localizing. Let α : A → B
be an injective ring homomorphism of finite type, which is generically finite.
Then we have:

W (A) ∩W †(B) = W †(A).

Proof. Indeed, we find an element c ∈ A, c 6= 0 such that Ac → Bc is finite,
and Bc is a free Ac-module. Clearly it suffices to show the Proposition if we
replace B by Bc. We consider the maps A → Ac → Bc and apply the last
Lemma and Proposition 2.13. �

Proposition 2.16. Let A→ B be a smooth morphism of finitely generated
algebras over a field K of characteristic p. We endow them with admissible
pseudovaluations. Then we have

W (A) ∩W †(B) = W †(A).

Proof. By Proposition 3.2 W † is a sheaf in the Zariski-topology. Therefore
the question is local on SpecA. We therefore may assume by Corollary 1.27
that any non-zero element of A is localizing. Obviously the question is local
on SpecB. By the definition of smooth we may therefore assume that the
morphism factors

A→ A[T1, . . . , Td]→ B,

where the last arrow is étale and in particular generically finite. We show
the Proposition for both arrows separately.

We know by the remark after Definition 1.8 that there is an admissible
pseudovaluation on A[T1, . . . , Td], whose restriction to A is an admissible
pseudovaluation. This shows the assertion for the first arrow.

For the second arrow we use Proposition 2.15. It is enough to show that
any element in C = A[T1, . . . , Td] is localizing. But this is Corollary 1.27. �

Let R be an integral domain and endow it with the trivial valuation.
Consider on the polynomial ring A = R[T1, . . . , Td] a degree valuation ν,
such that ν(Ti) = −δi < 0. Let γε be the associated Gauss norms on W (A).
In the following we need the dependence on δ. Therefore we set:

γ(δ) = γ1, and then γ(εδ) = γε.

Let us denote by [1, d] the set of natural numbers between 1 and d. A
weight k is a function k : [1, d] → Z≥0[1/p]. Its values are denoted by ki.
The denominator of k is the smallest number u such that puk takes values
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in Z. We set δ(k) = k1δ1 + . . .+ kdδd. We write Xi = Ti for the Teichmüller
representative and we set Xk = Xk1

1 · . . . ·X
kd
d .

By [7] any element α ∈W (A) has a unique expansion:

(2.17) α =
∑
k

ξkX
k, ξk ∈ V uW (R).

Here u denotes the denominator of k. This series is convergent in the V -adic
topology, i.e. for a given m ∈ N we have ξk ∈ V mW (R) for almost all k.

For ξ ∈W (R) we define:

ordV ξ = min{m | ξ ∈ V mW (R)}.

Proposition 2.18. The Gauss norm of γ(δ) is given by the following for-
mula:

(2.19) γ(δ)(α) = inf{ordV ξk − δ(k)}

and the truncated Gauss norm is given by:

(2.20) γ(δ)[n](α) = min{∞, ordV ξk − δ(k) | ξk /∈ V n+1W (R)}
= mink{γ(δ)[n](ξkXk)}.

Proof. It is enough to show the equation (2.20). The formula is obvious if
α = ξkX

k for a particular k. This implies (2.20) if the minimum is attained
exactly once on the right hand side.

Let δ(l) ∈ Rd
>0, l ∈ N be a sequence which converges to the given δ.

We denote by γ(l)[n] the truncated Gauss norm on Wn+1(A) associated to
numbers δ(l). We easily see that

lim
l→∞

γ(l)[n](α) = γ(δ)[n](α).

Clearly the right hand side of (2.20) is also continuous with respect to δ.
Therefore it suffices for the proof to construct a sequence δ(l) such that for
each l the minimum

min{γ(l)[n](ξkXk)}
is assumed exactly once. This is the case for α 6= 0. Indeed on the right
hand side of (2.20) all but finitely many γε[n](ξkXk) are equal to ∞. We
denote by g the smallest of these values and by g1 the next greater value
which may be ∞. Let T be the set of weights where the value g is assumed.

The set of linear functions η : Rd → R such that

ordV ξk + η(k) 6= ordV ξk′ + η(k′)

for two different weights involved of T is dense. We find an η in this set whose
matrix has positive entries. Moreover we may assume that η(k) < (q1−q)/2
if γ(δ)[n](ξkXk) 6=∞. Then δ(l) = δ + l−1η meets our requirements. �

Remark: In the case of a polynomial algebra A it is useful to consider
a stronger version of overconvergence, which makes only sense for rings of
Witt vectors. With the notations above we define:

(2.21) γ̆ε(α) = inf{ordV ξk − ε|k| − u}.
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This is clearly a pseudovaluation for each ε. If this inf is not −∞ we call α
overconvergent with respect to γ̆ε. One easily verifies:

(2.22) γ̆ε(α) ≤ γε(α)
γ̆ε(αr) ≥ (r − 1)γε(α) + γ̆ε(α).

It is important to note that the Teichmüller representative [f ] of an ele-
ment f ∈ A is γ̆ε-overconvergent. This is an immediate consequence of the
following

Lemma 2.23. Let R be a Zp-algebra. Let A be an R-algebra. Let x1, . . . , xn ∈
R and t1, . . . , td ∈ A be elements. We denote by k = (k1, . . . , kd) ∈ Z≥0[1/p]
a weight. Then we have in W (A) the following relation:

(2.24) [x1t1 + . . .+ xdtd] =
∑

k,|k|=1

αk[t1]k1 · . . . · [td]kd ,

where αk ∈ V uW (R) and pu is the denominator of k.

Proof. Clearly it is enough to show this Lemma in the case, where x1 =
1, . . . , xd = 1. Moreover we may restrict to the case where R = Zp and A
is the polynomial algebra over Zp in the variables t1, . . . , td. Then W (A)
is a Z≥0[1/p]-graded, such that the monomial [t1]k1 · . . . · [td]kd has degree
|k| (note that this monomial is in general not in W (A).) More precisely
a Witt vector of polynomials (p0, p1, p2, . . .) 6= 0 is homogeneous of degree
m ∈ Z≥0[1/p] if each polynomial pi has degree pim, if pi 6= 0. In the case
where pim is not an integer the condition says that pi = 0.

Since [t1 + . . . + td] is homogeneous of degree 1 the Lemma follows from
[7] Prop.2.3. �

Lemma 2.25. Let (A, ν) a ring with a proper pseudovaluation. Let α ∈
VW (A). Assume that γε(α) ≥ 0. Then the element 1−α is a unit in W (A)
and we have

(2.26) γε(1− α)−1 ≥ 0.

Assume moreover that A = R[T1, . . . , Td] is a polynomial ring with a
degree valuation.. Then

γ̆ε(1− α)−1 ≥ min{0, γ̆ε(α)}.

In particular (1− α)−1 is γ̆ε-overconvergent if α is.

Proof. We write α = V η. We find γε/p(η) > −1. We have in W (A) the
identity:

(1− V η)−1 = 1 +
∑
i>0

pi−1 V (ηi) =
∑
i≥0

αi.

The middle term shows that the series converges V -adically and the last sum
proves the inequality (2.26). The last assertion is obvious from (2.22). �

Proposition 2.27. Let (A, ν) a ring with a proper pseudovaluation. Let
wn : W (A)→ A denote the Witt polynomials. An element α ∈ W †(A) is a
unit, iff w0(α) is a unit in A.
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Assume moreover that A = R[T1, . . . , Td] is a polynomial ring with a
degree valuation. If α is γ̆ε-overconvergent, then α−1 is γ̆δ-overconvergent
for some δ > 0.

Proof. We write α = [a]+ V η, with a ∈ A and η ∈W (A). To prove the first
assertion we may assume that a = 1. Applying Corollary 2.10 we assume
that γε( V η) > 0. Then the assertion follows from Lemma 2.25.

Now we prove the second assertion: Since every Teichmüller representa-
tive is γ̆ε-overconvergent, it suffices to show that the inverse of 1+[a−1] V η =
1+ V ([a−p]η) is γ̆ε-overconvergent. Since γ̆ε is a pseudovaluation we see that
V ([a−p]η) is γ̆ε-overconvergent too. By Corollary 2.10 we find ε/p such that

γε/p([a
−p]η) > −1.

Therefore we may apply the Lemma 2.25. �

Proposition 2.28. Let A be an algebra over a perfect field K. Let ν be
an admissible pseudovaluation on A. Then W †(A) is an algebra over the
complete local ring W (K).

The W (K)-algebra W †(A) is weakly complete in the sense of [12].

Proof. Let z1, . . . , zr ∈W †(A). Consider an infinite series

(2.29)
∑

akz
k, ak ∈W (K), zk = zk11 · . . . · z

kr
r .

We assume that there are real numbers δ > 0, and c, such that

ordp ak ≥ δ|k|+ c.

This implies that the series (2.29) converges in W (A). We have to show that
the series converges to an element W †(A). We choose a common radius ε of
convergence for z1, . . . , zr. Making ε smaller we may assume that:

γε(zi) ≥ −δ.

Then we find:
γε(akak) ≥ ordp ak − δ|k| ≥ c.

Therefore (2.29) converges to an element of W †(A). �

We will point out that by Monsky and Washnitzer the last proposition
implies Hensel’s Lemma for the overconvergent Witt vectors:

Proposition 2.30. Let A be an algebra over a perfect field K. Let ν be an
admissible pseudovaluation on A. Let f(T ) ∈ W †(A)[T ] be a polynomial.
We consider the homomorphism w0 : W †(A)→ A.

Let a ∈ A be an element, such that

f(a) = 0 and f ′(a) is a unit in A.

Then there is a unique α ∈ W †(A) such that f(α) = 0 and such that a ≡
α mod VW †(A).

Proof. The kernel of the natural morphism W †(A)/pW †(A)→ A is an ideal
whose square is zero. Therefore there is an ᾱ ∈ W †(A)/pW †(A) which
reduces to a and such that f(ᾱ) = 0. The rest of the proof is a general fact
about weakly complete algebras explained below. �
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For the explanation we follow the notations of [12]: Let (R, I) be a
complete noetherian ring. Let A be a weakly complete finitely generated
(w.c.f.g.) algebra over (R, I). We write Ā = A/IA. Let A → B be a
morphism of w.c.f.g. algebras, such that B̄ = Ā[X1, . . . , Xn]/(F̄ (1) . . . F̄ (s)),
s ≤ n and the s× s subdeterminants of (∂F

(i)

∂Xj
) generate the unit ideal in B̄.

Then by [12] p. 195 the morphism A → B is very smooth. As an example
we may take for B the weak completion of

A[X,T ]/(f(X), 1− f ′(X)T ),

where f(X) ∈ A[X] is a polynomial.

Proposition 2.31. Let C be a weakly complete (not necessarily finitely
generated but p-adically separated) algebra over (R, I). Let f(X) ∈ C[X] be
a polynomial and let γ̄ ∈ C̄ be an element, such that f(γ̄) = 0 and f ′(γ̄) is
a unit in C̄. Then there is a unique element γ ∈ C, such that f(γ) = 0 and
γ ≡ γ̄ mod IC.

Proof. By Hensel’s Lemma applied to the completion of C the uniqueness
of the solution is clear.

For the existence we write f(X) = sdX
d + sd−1X

d−1 + · · · + s1X + s0,
where si ∈ C.

Let A = R[Sd, . . . , S0]† be the weak completion of the polynomial algebra.
We set

F (X) = SdX
d + · · ·+ S1X + S0 ∈ A[X]

and we let B be the weak completion of

A[X,T ]/(F (X), 1− TF ′(X)).

Let A → C be the homomorphism defined by Si 7→ si. The solution γ̄
defines a homomorphism

R/I[Sd, . . . , S0, X, T ]/(F̄ (X), 1− T F̄ ′(X))→ C̄

where Si 7→ si mod IC and X 7→ γ̄, T 7→ f ′(γ̄)−1.
Hence we obtain a commutative diagramm

(2.32) A

��

// C

��
B // C̄.

Since A→ B is very smooth by the example above, we find a morphism
B′ → C making (2.32) commutative. The image of X is the desired solution
γ ∈ C. �

We will now study the behaviour of overconvergent Witt vectors in finite
étale extensions. Let A be a finitely generated K-algebra. Let B a finite
étale A-algebra which is free as an A-module. Let ei, 1 ≤ i ≤ r be a basis
of the A-module B. Then the natural map

(2.33) W (A)r →W (B),

which maps the standard basis of the free module W (A)r to the Teichmüller
representatives [ei] is an isomorphism. Moreover W (B) is an étale algebra
over W (A).
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Indeed, by [7] A8 the Wn(A)-algebra Wn(B) is étale for each n. We set
In = VWn−1(A) ⊂ Wn(A). Then by loc.cit. we have InWn(B) ⊂ VWn(B).
¿From this we conclude by the lemma of Nakayama that:

Wn(A)r →Wn(B),

is an isomorphism. Taking the projective limit we obtain (2.33). If we tensor
(2.33) with A⊗w0 we obtain that A⊗w0 W (B) = B.

We will now assume that B is monic

B = A[T ]/f(T )A[T ],

where

(2.34) f(T ) = Tm − cm−1T
m−1 − . . .− c1T − c0.

Let ν be a negative pseudovaluation on A. We endow B with the equivalence
class of admissible pseudovaluations defined by Proposition 1.7.

Lemma 2.35. Let d ∈ R, such that d > ν(ci) for i = 1, . . . ,m. An element
b ∈ B has a unique representation

b =
m−1∑
i=0

aiT
i.

We set

(2.36) ν̃(b) = min
i=1,...,m−1

{ν(ai)− id}.

Then ν̃ is an admissible pseudovaluation on B.

Proof. We consider on A[T ] the pseudovaluation µ (1.11). We will show that
with d as above ν̃ is the quotient of µ.

Let

b̃ =
s∑
j=0

ujT
j ,

be an arbitrary representative of b. We need to show that µ(b̃) is smaller
than the right hand side of (2.36). We prove this by induction on s. For
s < m there is nothing to show. For s ≥ m we obtain another representative
of b:

(2.37) b̃′ =
m−1∑
j=0

ujT
j +

∑
k≥m

uk(
m−1∑
l=0

clT
l)T k−m.

On the right hand side there is a polynomial of degree at most s−1. There-
fore it suffices by induction to show that

µ(b̃′) ≥ µ(b̃).

The last inequality is a consequence of the following:

(2.38) µ(ujT j) ≥ µ(b̃), for j = 0, . . . ,m− 1
µ(ukclT k−m+l) ≥ µ(b̃) for k ≥ m, 0 ≤ l ≤ m− 1.

The first set of these inequalities is trivial. For the second set we compute

µ(ukclT k−m+l) ≥ ν(uk) + ν(cl)− kd+ (m− l)d
≥ µ(uk)− kd ≥ µ(b̃).
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The last equation holds because by the choice of d:

ν(cl) + (m− l)d ≥ 0.

This shows the second set of inequalities. �

Because ν̃ restricted to A coincides with ν we simplify the notation by
setting ν̃ = ν. The Gauss norms (2.2) induced by the pseudovaluation ν on
W (B) and W (A) will be also denoted by the same symbols γε.

Lemma 2.39. With the notations of Lemma 2.35 we assume that B is ètale
over A. We will denote the residue class of T in B by t.

Then there is a constant G ∈ R with the following property: Each b ∈ B
has for each integer n ≥ 0 a unique representation

b =
m−1∑
i=0

anit
ipn
.

Then we have the following estimates for the pseudovaluations of ani:

(2.40) ν(ani) ≥ ν(b)− pnG.

Proof. Since B is étale over A the elements

1, tp
n
, t2p

n
, . . . , t(m−1)pn

are for each n a basis of the A-module B. We write

(2.41) ti =
m−1∑
j=0

ujit
jp.

We introduce the matrix U = (uji) and we set for matrices

ν(U) = min
i,j
{ν(uji)}.

We deduce the relation:
a1j =

∑
i

ujia0i.

We will write the last equality in matrix notation:

a(1) = Ua(0).

Let U (pn) the matrix obtained form U by raising all entries of U in the pn-th
power. Then we obtain with the obvious notation:

a(n+ 1) = U (pn)a(n).

It is obvious that for two matrices U1, U2 with entries in B

ν(U1U2) ≥ ν(U1) + ν(U2).

We choose a constant C such that

ν(U) ≥ −C.
Therefore we obtain:

ν(a(n)) = ν(U (pn−1) · . . . · Ua(0))
≥ −(pn−1C + . . .+ pC + C) + ν(a(0)).

By Lemma 2.33 we have

ν(b) = min{ν(a0i)− id} ≤ ν(a(0)).
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Therefore we obtain:

ν(a(n)) ≥ −pn C

p− 1
+ ν(b).

We therefore found the desired constant. �

Proposition 2.42. Let B = A[t] be a finite étale A-algebra as in Lemma
2.39. Let G > 0 be the constant of this Lemma. Let x = [t] ∈ W (B) be
the Teichmüller representative. By (2.33) 1, x, . . . , xm−1 is a basis of the
W (A)-module W (B). We write an element η ∈W (B)

η =
m−1∑
i=0

ξix
i, ξi ∈W (A).

There is a real number δ > 0, such that for ε ≤ δ an inequality

γε(η) ≥ −C implies γε(ξi) ≥ −C − εG.

Proof. We choose a constant G′ > 0 such that

ν(ti) ≥ −G′, for i = 0, . . . ,m− 1.

We choose δ such that δ(G+G′) ≤ 1. We write

ξi =
∑
s≥0

V s
[as,i] with as,i ∈ A.

We define
ζi(n) =

∑
s≥n

V s−n
[as,i].

We will show by induction on n the following two assertions:

(2.43) γε(
m−1∑
i=0

V n
ζi(n)xi) ≥ −C.

(2.44) γε( V n
[an,i]) ≥ −C − εG.

We begin to show that the first inequality for a given n implies the second.
We set:

θ(n) =
m−1∑
i=0

V n
ζi(n)xi.

The first non-zero component of this Witt vector is

yn =
m−1∑
i=0

an,it
ipn
.

in place n+ 1. We conclude that

n+ εp−nν(yn) ≥ γε(θ(n)) ≥ −C,
where the last inequality is (2.43). This shows that:

ν(y) ≥ −εpn(C + n).

We conclude by Lemma 2.39 that

(2.45) ν(an,i) ≥ −(pn/ε)(C + n)− pnG,
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and therefore

γε( V n
[an,i]) = n+ εp−nν(an,i) ≥ −C − εG.

Therefore the Proposition follows if we show the assertion (2.43) by induc-
tion. The assertion is trivial for n = 0 and we assume it for n. With the
notation above we write:

θ(n+ 1) = θ(n)−
∑m−1

i=0
V n

[an,i]xi

= (θ(n)− V n
[yn])− (

∑m−1
i=0

V n
[an,i]xi − V n

[yn]).

The Witt vector in the first brackets has only entries which also appear in
θ(n) and therefore has Gauss norm γε ≥ −C. The assertion follows if we
show the same inequality for the Witt vector in the second brackets:

V n+1
τ = (

m−1∑
i=0

V n
[an,i]xi − V n

[yn]).

We set

[yn] =
m−1∑
i=0

[an,itip
n
] = (s0, s1, s2, . . .).

Then we find
V τ = (0, s1, s2, . . .).

We know that sl is a homogeneous polynomial of degree pl in the variables
an,it

ipn
for i = 1, . . .m− 1. By the choice of G′ we find ν(tip

n
) ≥ pnν(ti) ≥

−pnG′. Using (2.45) we find:

ν(sl) ≥ −pl((pn/ε)(C+n)+pnG)−plpnG′ = −pn+l((1/ε)(C+n)+G+G′).

We have
V n+1

τ =
∑
l≥1

V n+l
[sl].

For the Gauss norms of the entries of this vector we find for l ≥ 1:

γε( V n+l
[sl]) = n+ l + εp−n−lν(sl) ≥ n+ l − ε((1/ε)(C + n) +G+G′)

= l − C − ε(G+G′) ≥ −C.

The last inequality follows since l ≥ 1 by the choice of δ. We conclude that

γε( V n+1
τ) ≥ −C.

�

Corollary 2.46. Let A be a finitely generated algebra over K. Let B =
A[T ]/(f(T )) be a finite étale A-algebra, where f(T ) ∈ A[T ] is a monic
polynomial of degree n. We denote by t the residue class of T in B. We set
x = [t] ∈W †(B).

Then W †(B) is finite and étale over W †(A) with basis 1, x . . . , xn−1.
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3. The sheaf property

We will prove that the overconvergent Witt vectors are a sheaf for the
Zariski topology. This is done for overconvergent Witt differentials in [2] over
a perfect field. For Witt vectors the argument given here is more elementary
and works over an integral domain R. The basic idea due to Meredith is the
same as for Witt-differentials.

Let R be an integral domain of characteristic p. Consider the ring

L = R[T1, . . . , Tg, S
±1
1 , . . . , S±1

m ]

We define a pseudovalution ν on L. We write a ∈ L as a Laurent polynomial

a =
∑
k,l

αklT
kSl, k ∈ Zg≥0, l ∈ Zm.

We set
ν(a) = −max{|k|+ |l| | αkl 6= 0}.

We set ν(0) =∞. By Proposition 1.30 this is an admissible pseudovaluation
(Definition 1.8). We write deg a = −ν(a). We should note that in general
we have only deg(ab) ≤ deg a+ deg b, but not equality.

Consider a Witt vector

(3.1) σ = (s0, s1, s2, . . .) ∈W (L).

The normalized degree of σ is defined by

Ndeg σ = sup{deg si/pi | i ∈ Z≥0}.

If Ndeg σ <∞, we call σ bounded. The bounded Witt vectors are a subring
of the overconvergent Witt vectors which are defined by the Gauss norms

γδ(σ) = inf
i
{i− δ deg si/pi}.

We will say, that a Witt vector (3.1) is concentrated in an intervall [c, d] ⊂
Z≥0, if si = 0 for i /∈ [c, d].

Let A be a finitely generated algebra over R. We consider X = SpecA as
a Grothendieck topology with objects being the open set D(f), with f ∈ A,
and the usual coverings. We denote by W †O the presheaf D(f) 7→W †(Af ).

Proposition 3.2. Let f1, . . . , fm ∈ A elements which generate the ideal A.
Let U be the covering of SpecA by the open sets Ui = D(fi). Then we have
for the Cech cohomology

(3.3) H i(U ,W †O) =

{
W †(A) if i = 0
0 if i = 1.

In particular the presheaf W †O extends uniquely to a sheaf on the topological
space SpecA.

Proof: We augment the Cech complex by W †(A) and show that the
cohomology of the augmented complex is 0. Let us first assume that fi is
not a zero-divisor for i = 1, . . .m.

We represent A as a quotient

R[T1, . . . , Tg, S1, . . . , Sm]→ A,



26 CHRISTOPHER DAVIS, ANDREAS LANGER, AND THOMAS ZINK

such that the elements Si are mapped to fi. If we speak of the normalized
degree Ndeg a of an element a ∈ A, we mean the normalized degree of a given
representative ã ∈ L, which will be clear from the context, e.g. for fi we
take always the representative Si and write Ndeg fi = 1. For a localization
Afi0

·...·fir
we consider the representation

R[T1, . . . , Tg, S1, . . . , Sm, S
−1
i0
, . . . , S−1

ir
]→ Afi0

·...·fir

Then the normalized degree refers to this representation.
Then the Teichmüller representatives [f1], . . . , [fm] generate the unit ideal

in W †(A). We find a relation
m∑
i=1

ri[fi] = 1, ri ∈W †(A).

If we raise this equation to the m`-th power, we find a relation

Q`,i(r1, . . . , rm, [f1], . . . , [fm])[fi]` = 1.

Here Q`,i are polynomials which are homogeneous of degree m` in r1, . . . , rm
and homogeneous of degree (m− 1)` in [f1], . . . , [fm].

Let σ = (σi0,...,ir) be an alternating r-cocycle with values in σi0,...,ir ∈
W †(Afi0

·...·fir
). We will show that σ is a coboundary.

We write σ = (s(0), s(1), s(2), . . .). Since this Witt vector is overconver-
gent, we find C ∈ N, such that

`− 1
C

deg s(`)i0,...,ir
p`

> −1.

Here we have chosen representatives of s(`)i0,...,ir which are fixed throughout
our discussion. We rewrite the last inequality in the form

(3.4) deg s(`) < C(`+ 1)p`.

We define the truncated cochain

σ<u = (s(0), s(1), . . . , s(2u − 1), 0, 0, . . .).

We deduce from (3.4) that

(3.5) Ndeg σ<u < C2u.

In particular this implies that

[fα]C2u
σ<uα,i1,...,ir ∈W (Afi1

·...·fir
).

This Witt vector is concentrated in [0, 2u).
We will consider “generalized” cochains γ that have values in the polyno-

mial rings W †(Afi0
·...·fir

)[r1, . . . , rm]. If we speak of the normalized degree
of such a cochain, we mean the maximum of the normalized degrees of the
coefficients of these polynomials in r1, . . . , rn, while degree means degree of
the polynomials.

Now we construct inductively “generalized” cochains

τ<ui1,...,ir ∈W (Afi1
·...·fir

)[r1, . . . , rm],

which are concentrated in [0, 2u) and which have the following properties:
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1) deg τ<ui1,...,ir ≤ 2Cm2u.

2) Ndeg τ<ui1,...,ir < 2Cm2u.

3) [fik ]C2u
τ<ui1,...,ik,...,ir ∈W (A

fi1
·...,cfik

,...·fir
)[r1, . . . , rm].

4) σ<u − ∂τ<u = 0 modulo V 2u
W †(Afi0

·...·fir
).

5) τ<u+1 = τ<u+τ [u+1], where τ [u+1] is concentrated in the interval
[2u, 2u+1).

We note that in 4) we have evaluated the polynomials in ri.
Assume that τ<u is constructed. Then we consider the r-cochain

γ = (σ<u − ∂τ<u)<u+1.

Here we truncate the difference in the place 2u+1. Then γ is concentrated
in [2u, 2u+1) and has normalized degree Ndeg γ < 2Cm2u. By property 1)
we have deg γ ≤ 2Cm2u. Then we define the “generalized” cochain

τ [u+ 1]i1,...,ir = (
∑

QC2u+1,α[fα]C2u+1
γα,i1,...,ir)<u+1.

where we truncate again the sum at the place 2u+1. Then τ [u + 1] has
normalized degree

Ndeg τ [u+ 1] < mC2u+1 + 2Cm2u = 2Cm2u+1.

The degree of τ [u+ 1] is ≤ mC2u+1 +mC2u+1 = 2Cm2u+1.
If we restrict our cochains to W2u+1(Afi1

·...·fir
) then the γ becomes a

cocycle and a well-known formal computation yields

γ − ∂τ [u+ 1] = 0 modulo V 2u+1

This implies

σ<u − (∂τ<u + ∂τ [u+ 1]) = 0 modulo V 2u+1
.

By property 5) this shows 4). The properties 1) and 2) follow from the
corresponding properties for τ [u+ 1] proven above. Finally we obtain

[fik ]C2u+1
τ [u+ 1]i1,...,ir ∈W (A

fi1
·...,cfik

,...·fir
)[r1, . . . , rm]

since this holds for σ<u and for ∂τ<u.
Therefore we have constructed data with the properties 1)−5) as required.
We consider the polynomial

τ [u]i1,...,ir =
∑

|I|≤Cm2u+1

τ [u]i1,...,ir(I)rI ∈W †(Afi1
·...·fir

),

i.e. we evaluate the polynomials. Then σ is the boundary of
∑

u τ [u]. We
have to show that the last element converges to an element in W †(Afi1

·...·fir
).

For this we compute the Gauss norms. Since τ [u](I) is concentrated in
[2u−1, 2u) we find by property 2)

γδ(τ [u](I)) ≥ 2u−1 − δ2Cm2u ≥ 2u−2,

if δ < 1/8mC.
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On the other hand we find for arbitrarily small e > 0 a δ > 0 such that
γδ(ri) > −e. Then we have

γδ(τ [u]i1,...,ir(I)rI) > 2u−2 − |I|e ≥ 2u−2 −mC2u+1e ≥ 0

if e < 1/8mC. Therefore the terms of the sum
∑

u τ [u]i1,...,ir are uniformly
bounded in the Gauss norm γδ and therefore this sum converges to an ele-
ment of τi1,...,ir ∈W †(Afi1

·...·fir
), such that ∂τ = σ.

Finally we treat the case where zero-divisors among the fi are allowed.
The we find a surjective algebra homomorphism B → A, such that B
is a finitely generated algebra over R and such that there are preimages
gi ∈ B of fi, which are not zero-divisors in B and generate the unit ideal:
(g1, . . . , gm) = B.

Let a be the kernel of B → A. Then we obtain an exact sequence of
presheaves on SpecB:

(3.6) 0→W †(ag)→W †(Bg)→W †(Ag)→ 0.

Let Ũ be the covering of SpecB given by the D(gi) for i = 1, . . .m. We have
shown that the Cech cohomology of the presheaf W †(Bg) is trivial with
respect to Ũ . But the same argument shows that the Cech cohomology of
the presheaf W †(ag) is trivial as well. Since Agi = Afi

we obtain (3.3) from
the cohomology sequence. Q.E.D.
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