
LECTURES ON p-DIVISIBLE GROUP

THOMAS ZINK

1. Formal Groups and p-Divisible Groups

Let R be a commutative ring with unit. Let NilR be the category of nilpotent
R-algebras. Let Fi ∈ R[[X1, . . . , Xn, Y1, . . . , Yn]], 1 ≤ i ≤ n, be formal power series
in 2n variables. Take N ∈ NilR. Let N (n) = N ⊕ · · · ⊕N be the direct sum of n
copies of N . Given x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ N (n), the finite sum

Fi(x, y) = Fi(x1, . . . , xn, y1, . . . , yn)

is a well-defined element of N . Consider the map defined by the n-tuple F ,

+F : N (n) ×N (n) → N (n),

(x, y) 7→ (F1(x, y), . . . , Fn(x, y))

Now suppose +F is a group law for each N ∈ NilR, with neutral element 0 =
(0, . . . , 0). Then 0 + 0 = 0 implies that Fi(0, 0) = 0, so Fi has no constant terms
for any i. In this case, the n-tuple F = (Fi) can be considered as a functor

NilR −→ Groups,

N 7→ (N (n),+F ).

The composition of F with the forgetful functor Groups→ Sets is the functor

NilR → Sets,

N 7→ N (n).

This functor will be denoted by Ân, i.e.,

Ân(N) = N (n)

for N ∈ NilR.

Next, we consider how to define a morphism of functors Âm → Âm.

Example: Given Fi(X1, . . . , Xn) ∈ R[[X1, . . . , Xn]], 1 ≤ i ≤ m, then

ΨN : Nn → Nm N ∈ NilR,

x 7→ (F1(x), . . . , Fm(x))

defines a morphism Ân → Âm of functors. Conversely, we have

Proposition 1.1. Suppose we are given a morphism of functors Φ : Ân → Âm.
Then there are formal power series Fi ∈ R[[X1, . . . , Xn]], 1 ≤ i ≤ m, such that for
any N ∈ NilR, the homomorphism ΦN : Nm → Nn is defined by

(x1, . . . , xn) 7→ (F1(x1, . . . , xn), . . . , Fm(x1, . . . , xn)).
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Proof. In R[[X1, . . . , Xn]], consider the nilpotent algebra

Nt = 〈X1, . . . , Xn〉/〈X1, . . . , Xn〉t.
Then Φ defines

ΦNt : N
(n)
t → N

(m)
t .

The homomorphism ΦNt is determined by

ΦNt(X1, . . . , Xn) = (F1[t], . . . , Fm[t]) ∈ N (m)
t .

If Φ is a morphism of functors, we have the commutative diagram

N
(n)
t+1

ΦNt+1 //

��

N
(m)
t+1

��
N

(n)
t ΦNt

// N (m)
t

So there are formal power series F = (Fi; 1 ≤ i ≤ m) with Fimod deg t = Fi[t].

By construction the proposition holds for N = Nt. So it is easy to see that the
proposition is true for any N ∈ NilR of the form N = ⊕iNti . For any finitely
generated nilpotent R-algebra, there is a surjective homomorphism ⊕iNti � N .
It is easy to see ΦN is of the given form. Any N ∈ NilR is a union of finitely
generated nilpotent algebras. We are done. �

Thus a morphism of functors Φ : Ân → Âm is given by power series. It is an ana-
logue of the fact that the morphism between affine schemes is given by polynomials.

Definition 1.2. A formal group law is a functor

G : NilR → Groups

such that F ◦G ∼= Ân, where F : Groups→ Sets is the forgetful functor.

Example: (1) Ĝa, the additive formal group law, is defined by Ĝa(N) = (N,+).
(2) Let N ∈ NilR. We define a commutative algebra structure on R⊕N by defining
the multiplication by (r1, n1)(r2, n2) = (r1r2, r1n2 + r2n1 + n1n2). We define the

multiplicative formal group law Ĝm by

Ĝm(N) = (1 +N)× ⊂ R⊕N.
Here (1+N)× means elements in R⊕N of the form 1+x, x ∈ N with multiplicative

law. As a functor with values in Sets, it is clear that Ĝm ∼= Â1.

From now on we only consider commutative formal group law. We use Ab to
denote the category of abelian groups.

Definition 1.3. A functor

H : NilR −→ Ab

is called a formal group if
(i) H is exact, i.e., if 0→ N1 → N2 → N3 → 0 is an exact sequence in NilR, then

0→ H(N1)→ H(N2)→ H(N3)→ 0
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is an exact sequence in Ab.
(ii) If N ∈ NilR and N = ∪i∈INi, where Ni are sub-algebras of N and I is
a filtered set, (i.e., given any Ni, Nj for i, j ∈ I, there is an r ∈ I such that
Ni ↪→ Nr, Nj ↪→ Nr,) then H(N) = ∪i∈IH(Ni).

As a first example of formal groups, we want to show that given a commutative
smooth algebraic group G over R, we can associate to it a formal group. As a
preparation, recall the notion of smoothness. There are various equivalent defini-
tions of smoothness. Here we only remark that smoothness is equivalent to finite
presentation plus formal smoothness. Recall that a morphism between schemes
f : X → Y is called formally smooth if for any exact sequence

0→ I → A→ B → 0,

where A,B are commutative rings over Y (i.e., SpecA and SpecB are schemes over
Y ) with 1, and I is a nilpotent ideal of A, the natural map XY (A) → XY (B) is
surjective. Here XY (A) = HomY (SpecA,X).

Lemma 1.4. Let X be a scheme over R. Let Ai, i = 1, 2, 3 be rings over R. Let
α : A1 → A3 be a surjective homomorphism with nilpotent kernel Kerα, and let
β : A2 → A3 be a homomorphism. Form the fiber product A1 ×A3

A2. Write
X(A) = HomSpecR(SpecA,X) for any R-algebra A. Then we have a bijection

X(A1)×X(A3) X(A2) ∼= X(A1 ×A3
A2).

Proof. By the universal property of the fiber product, there is a map

Φ : X(A1 ×A3 A2)→ X(A1)×X(A3) X(A2).

To show it is a bijection, we first consider the case when X = SpecB is affine.
Then X(Ai) = HomR(B,Ai). We aim to define the inverse map of Φ. Given
(a1, a2) ∈ X(A1) ×X(A3) X(A2) = Hom(B,A1) ×Hom(B,A3) Hom(B,A2), which
means that we have maps ai : B → Ai such that αa1 = βa2, by the universal
property of the fiber product again, we define a map b : B → A1 ×A3

A2. Define
Ψ((a1, a2)) = b. It is easy to see that Ψ is the inverse of Φ.

Now consider the general case. Since Kerα is nilpotent, SpecA1
∼= SpecA3 as

a topological space. Hence Spec(A1 ×A3 A2) ∼= SpecA2 as a topological space.
Given (a1, a2) ∈ X(A1) ×X(A3) X(A2), for any x ∈ SpecA2, there is a basic open
affine neighborhood Spec(A2)f of x such that a2(Spec(A2)f ) is contained in an
open affine U of X. Since α : A1 → A3 is surjective, we can take g ∈ A1 such that
α(g) = β(f) ∈ A3. Then by the affine case considered above there is a morphism

bf : Spec[(A1)g ×(A3)α(g)
(A2)f ]→ U → X.

Since Spec(A1 ×A3
A2) ∼= SpecA2 as a topological space, when f ranges over a

set in A2 such that Spec(A2)f form a cover of SpecA2, then Spec[(A1)g ×(A3)α(g)

(A2)f ] form a cover of Spec(A1 ×A3
A2). So we can glue bf to get a morphism

b : Spec(A1 ×A3
A2) → X. Now define Ψ((a1, a2)) = b. One can check that Ψ is

the inverse of Φ. �

Proposition 1.5. Now let G be a commutative smooth group scheme over R. We
define a functor Ĝ : NilR → Ab, named the completion of G along the unit, by

Ĝ(N) = Ker(G(R⊕N)→ G(R)).
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Here R ⊕ N is endowed with the commutative ring structure (r1, n1) · (r2, n2) =
(r1r2, r1n2 + r2n1 + n1n2), and R ⊕N → R is the map sending N to 0. The map

G(R⊕N)→ G(R) is induced by the R⊕N → R. Then the functor Ĝ is a formal
group.

Proof. We first show that Ĝ is an exact functor. Let

0 // N1
f // N2

g // N3
// 0

be an exact sequence of nilpotent algebras. Let Ai = R ⊕ Ni. We have the nat-

ural homomorphisms A1
f // A2

g // A3
φ // R of commutative R-algebras.

Since g : N2 → N3 is surjective, so is g : A2 → A3. The algebra Ker(A2 → A3) = N1

is nilpotent. We check

A1
φ //

f

��

R

ψ

��
A2 g

// A3

is a fiber product. Here ψ is the structure map, i.e., ψ(r) = (r, 0) and φ : A1 =
R ⊕ N1 → R is the natural projection. First the diagram is commutative, since
gf(r, n) = g(r, f(n)) = (r, gf(n)) = (r, 0) = ψφ(r, n). If (r, n) ∈ A2, r

′ ∈ R
with g(r, n) = ψ(r′), i.e., (r, g(n)) = (r′, 0), then r = r′, g(n) = 0, so there is
n1 ∈ N1 such that n = f(n1), so we have (r, n) = f(r, n1), r = φ(r, n1). This shows
A1
∼= A2 ×A3 R.

Now we can use Lemma 1.3. Hence we get

G(A1) ∼= G(A2)×G(A3) G(R).

So we have the following exact sequences

0 // G(A1) //

��

G(A2)⊕G(R) //

��

G(A3)

��
0 // G(R) // G(R)⊕G(R) // G(R) // 0

Then by the snake lemma we have that the sequence of kernels

0→ Ĝ(N1)→ Ĝ(N2)→ Ĝ(N3)

is exact. To show the surjectivity of Ĝ(N2)→ Ĝ(N3) we use the formal smoothness
of G. In fact, the formal smoothness of G shows that G(A2)→ G(A3) is surjective,

then it is easy to see Ĝ(N2)→ Ĝ(N3) is surjective.

Next we have to show that if N = ∪i∈INi is a filtered union, then Ĝ(N) =

∪i∈IĜ(Ni). If G = SpecB is affine, then the smoothness of G implies that B is of
finite type over R. In this case, we claim that

SpecB(A) = lim−→ SpecB(Ai)

where A = R ⊕N, and Ai = R ⊕Ni. In fact, we can write B = R[X1, . . . , Xn]/a,
and for f ∈ SpecB(A) = Hom(B,A), f is determined by aj = f(xj) ∈ A, where
xj = Xj + a. Since Ai is filtered, there is an i ∈ I such that aj ∈ Ai for all j, hence
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the claim. This shows that Ĝ(N) = ∪i∈IĜ(Ni) if G is affine. For general G, we
can reduce it to the affine case. This completes the proof of the proposition. �

Definition 1.6. A functor H : NilR → Sets is called left exact if
(i) H(0) = {0}, where {0} is a given set with one element.
(ii) H respects fiber products, i.e., given a fiber product

N1 ×N3
N2

//

��

N1

��
N2 g

// N3

we have H(N1 ×N3
N2) ∼= H(N1)×H(N3) H(N2).

Proposition 1.7. A formal group H is left exact.

We omit the proof, and just remark that the condition (i) of left exactness of a
formal group H follows from the fact that H is an exact functor.

Example. Let X be a scheme over R and ξ ∈ X(R). Consider the functor

X̂ : NilR → Sets

X̂(N) = Fiberξ[X(R⊕N)→ X(R)].

The functor X̂ is called the completion of X along ξ. Then X̂ is left exact.

Corollary 1.8. A formal group H respects fiber products. In particular, we have

H(N1 ×N2) ∼= H(N1)×H(N2).

Next, we turn to another construction.

Let H be a functor NilR → Ab such that

(1.1) H(N1 ×N2) ∼= H(N1)×H(N2)

for any N1, N2 ∈ NilR. A formal group H is such a functor, as we have seen.

Proposition 1.9. For a functor H satisfying (1.1), there is an R-module structure
on H(N) for any N ∈ NilR with N2 = 0.

Proof. If N ∈ NilR and N2 = 0, the addition map + : N ⊕N → N , which sends
(n1, n2) to n1 + n2 (addition law of the algebra structure of N) is a morphism
of algebras. Let H be a functor satisfying (1.1). Apply H to the morphism +.
We get a homomorphism H(+) : H(N ⊕ N) → H(N). By Eq.(1.1) we have
H(N)×H(N) ∼= H(N ⊕N). So we have a homomorphism

H(N)×H(N)→ H(N).

We can check that this construction gives an abelian group structure on H(N)
(H(N) has another abelian group structure as an object of Ab. Later we shall see
that the two abelian group structures are the same). The zero element is just H(0).

Next we show that there is an inverse for any x ∈ H(N). Let f : N → N ⊕N be
the map f(n) = (n,−n). Then f is also a homomorphism of algebras, so we have
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commutative diagrams

N
f //

��

N ⊕N

+

��
0 // N

H(N)
H(f) //

��

H(N)×H(N)
H(p1) //

��

H(N)

H(0) // H(N)

where p1 is the projection N ×N → N to the first factor. Given x ∈ H(N), since
H(p1)H(f) = H(p1f) = id, we have H(f)(x) = (x, y) for some y ∈ H(N). It is
easy to see that x+ y = 0.

Let λ ∈ R. Then n 7→ λn induces an algebra homomorphism of N to N .
Apply the functor H to get λ : H(N) → H(N). It is not hard to see that these
constructions endow H(N) with an R-module structure. �

Definition 1.10. Let H be a functor satisfying (1.1). For any R-module M , we
define Mv ∈ NilR (v stands for vector group) by Mv = M as an abelian group and
M2
v = 0. We define the tangent functor tH of H by

tH : ModR →ModR

M 7→ H(Mv).

Example: Let (A,m, k) be a local ring. Let H : Nilk → Ab be the functor
H(N) = Hom(m, N). Then it is not hard to see that tH(k) = Hom(m/m2, kv),
which is the tangent space of SpecA at the closed point. This justifies the name
“tangent functor”.

For any M ∈ ModR,m ∈ M , put cm : R → M for the map cm(a) = am and
consider the map

(1.2) tH(R)⊗RM → tH(M)

ξ ⊗m 7→ tH(cm)(ξ).

Lemma 1.11. If tH is right exact and commutes with direct sums, then the map
(1.2) is an isomorphism.

Proof. If M = R, the isomorphism is trivial. If M = R(I) is a free R-module,
the isomorphism is also clear, since both sides commute with direct sum. For the
general case, M admits a presentation

R(J) → R(I) →M → 0.

So we have

tH(R)⊗R(J) //

��

tH(R)⊗R(I) //

��

tH(R)⊗M //

��

0

tH(R(J)) // tH(R(I)) // tH(M) // 0

Since the first two vertical arrows are isomorphisms by the above discussion, so is
the one on the right. �
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Lemma 1.12. Let H be a formal group. Let Ni ∈ NilR, i ∈ I. Assume there is
t ∈ N+ such that N t

i = 0 for all i ∈ I. Then N = ⊕i∈INi ∈ NilR. Hence H(N) is
well-defined. We have

H(⊕i∈INi) ∼= ⊕i∈IH(Ni).

Proof. The map ⊕i∈INi → Ni induces H(⊕i∈INi)→ H(Ni), so we have a natural
map

H(⊕i∈INi)→
∏
i∈I

H(Ni).

We want to show that this map induces an isomorphism H(⊕i∈INi)→ ⊕i∈IH(Ni).
If |I| = 2, this is Corollary 1.7. By induction, we know this is an isomorphism for
any finite set I. For general I, let J be a finite subset of I. We have an isomorphism
H(⊕i∈JNi) ∼= ⊕i∈JH(Ni). Since

H(⊕i∈INi) = H(∪J ⊕j∈J Nj) = ∪JH(⊕j∈JNj),

the lemma follows. �

Since a formal group H is exact, tH satisfies the condition of Lemma 1.11. We
get

Corollary 1.13. Let H be a formal group. Then we have the isomorphism (1.2)

tH(R)⊗RM → tH(M).

In particular, since tH is exact, tH(R) is a flat R-module.

Now we turn to the relations between the two notions: the formal group law
defined in Lecture 1, and the formal group defined in Lecture 2.

Theorem 1.14. Let H be a formal group. If tH(R) is a finitely generated free
R-module, then H is a formal group law defined in Lecture 1. More precisely, if
tH(R) ∼= Rd, then H ∼= Âd as functors with values in Sets.

The aim of this lecture is to prove Theorem 1.14.
We begin with some general remarks.

Let C be a category, N is an object in C. We define a functor

hN : C −→ Sets

by hN (M) = Hom(N,M). Let F : C → Sets be any other functor. We have a
natural map

Y : Hom(hN , F )→ F (N),

which is defined as follows. Given Φ : hN → F , then ΦN is a morphism hN (N) =
Hom(N,N)→ F (N). Define Y (Φ) = ΦN (idN ).

Lemma 1.15 (Yoneda’s Lemma). The map Y is a bijection.

Proof. In fact, we can construct the inverse map of Y as follows. Given α ∈ F (N),
we need to construct a map ΦM : hN (M) → F (M) for any object M in C. Given
f : N →M , define ΦM (f) = F (f)(α). It is not hard to see this gives an inverse of
Y . �
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Definition 1.16. Let G be a group, which acts on a set M . The set M is called a
principal homogeneous space over G, if the map

G×M −→M ×M

(g,m) 7→ (gm,m)

is bijective.

The case of M = ∅ is possible. Let φ : M1 →M2 be a G-morphism of principal
homogeneous space over G. Then φ is bijective if and only if M1 6= ∅.

Definition 1.17. A small surjection is a surjective map α : M � N in the
category NilR such that Kerα ·M = 0.

Let M → N be a small surjection with kernel K. Then + : K ⊕M → M is a
homomorphism in NilR, and

K ⊕M
+ //

p2

��

M

��
M // N

is a fiber product. Let G : NilR → Ab be a left exact functor, so G respect the
fiber product. We can apply G to the above fiber product to get

G(K)⊕G(M)
G(+) //

p2

��

G(M)

��
G(M) // G(N)

For η ∈ G(N), put
Gη(M) = Fiberη[G(M)→ G(N)].

Then G(K)×Gη(M) ∼= Gη(M)×Gη(M), i.e., Gη(M) is a principal homogeneous
G(K)-space.

Lemma 1.18 (Jacobi Inversion Theorem). Let F,H : NilR → Sets be two left
exact functors, and α : F → H a natural transformation. Assume
(i) α induces an isomorphism of the tangent functors, i.e.,

αN : F (N)→ H(N)

is bijective for any N ∈ NilR with N2 = 0;
(ii) F is smooth, i.e., for any M → N surjective, F (M)→ F (N) is also surjective.
Then F is an isomorphism of functors.

Remark: In the Jacobi Inversion Theorem, take F = H = Âd. These two functors
are left exact. Let α = (F1, . . . , Fd), where Fi are formal power series. Then on the
tangent spaces, the map

Rd = Âd(Rv) −→ Âd(Rv) = Rd

is defined by the Jacobian matrix Jac(F1, . . . , Fd) = ( ∂Fi∂Xj
). The Jacobi Inversion

Theorem says that if Jac(F1, . . . , Fd) is invertible, so is α = (F1, . . . , Fd). This is
an analogue of the Jacobi Inversion Theorem in calculus.
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Proof of Lemma 1.18. Let 0→ K →M → N → 0 be a small surjection in NilR.

Claim: if αN is a bijection, then αM is a bijection, in the diagram

F (M) //

αM

��

F (N)

αN

��
H(M) // H(N)

Let ξ ∈ F (N), η = αN (ξ) ∈ H(N). By assumption (ii), each of the maps F (M)→
F (N) and H(M) → H(N) is surjective. Since αN is bijective, it suffice to show
Fξ(M)→ Hη(N) is bijective for any ξ ∈ F (N). Because K2 ⊂ K ·M = 0, and by
(i), we see F (K) ∼= H(K). Denote this group by G. By the remark before Lemma
(1.18), we see that both Fξ(M) and Hη(M) are principal homogeneous G-spaces.
Since Fξ(M) 6= ∅ by assumption (ii), we see Fξ(M) → Hη(M) is bijective. The
claim follows.

Now let N be any object in NilR. Then there is an n such that Nn = 0. So we
have the small surjections

0→ Nn−1 → N → N/Nn−1 → 0,

0→ Nn−2/Nn−1 → N/Nn−1 → N/Nn−2 → 0,

· · ·
0→ N2/N3 → N/N3 → N/N2 → 0

and (N/N2)2 = 0. So αN/N2 is bijective. By induction, we get the lemma. �

Now we are ready to prove Theorem 1.14.

Proof of Theorem 1.14. For any M ∈ModR we have

(1.3) H(Mv) ∼= tH(R)⊗RM ∼= HomR(tH(R)∨,M),

where tH(R)∨ is the dual module of tH(R). Write T = tH(R)∨. Let η1 be the ele-
ment of H(Tv) corresponding to idT in the isomorphism (1.3). By Yoneda’s Lemma,
Hom(hTv , H) ∼= H(Tv). Hence η1 induces a natural transformation hTv → H.
Moreover (1.3) shows that, if N ∈ NilR with N2 = 0 then hTv (N) → H(N) is
bijective (just take N = Mv for some M ∈ModR).

Now in S[X] = R[X1, . . . , Xd], let S[X]+ = (X1, . . . , Xd) be the ideal generated
by X1, . . . , Xd. Take

Tn = S[X]+/(S[X]+)n+1.

The freeness of tH(R) shows that T1
∼= T as an R-module. Since H is exact, we

have surjective morphisms
H(Ti+1)→ H(Ti).

So we can lift η ∈ H(T1) to ηi ∈ H(Ti), such that ηi+1 7→ ηi under the surjection
H(Ti+1)→ H(Ti). Yoneda’s Lemma gives ηi : hTi → H, and {ηi} forms an induc-
tive system by our construction (note that the functor T 7→ hT is contravariant).
Define

F = lim−→hTi ,

and
η = lim−→ ηi : F −→ H.
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Next we check that F ∼= Âd. For any N ∈ NilR, it is easy to see that

Hom(Ti, N) =
{

(n1, . . . , nd) ∈ N |nk11 · · ·n
kd
d = 0, for k1 + · · · kd ≥ i+ 1

}
.

Hence

F (N) = lim−→Hom(Ti, N) = N (d).

So F ∼= Âd. In particular F is also smooth (terminology as in Lemma 1.18 (ii)).
The morphism η induces an isomorphism on the tangent functors by the above
discussion, and both F and H are smooth. So we see that η is an isomorphism by
Jacobi Inversion Theorem. We are done. �

Lemma 1.19. If N ∈ NilR with N2 = 0, and H : NilR → Ab is a formal group,
then the two abelian group structures defined in Lecture 3 coincide.

Proof. We use +τ : H(N) × H(N) → H(N) to denote the addition law of H(N)
as an object in Ab, and + the addition law on H(N) defined by H(+), where
+ : N × N → N is the addition of N . Apply H to {0} ↪→ N . We get H({0}) →
H(N). Let 0N be the image of H(0). We have seen in Lecture 3, that 0N is
the zero for +. Now H is functorial, so for any N1 → N2, N1, N2 ∈ NilR,
(H(N1),+τ ) → (H(N2),+τ) is a homomorphism of abelian groups. In the spe-
cial case {0} ↪→ N , H({0}) has only one element, which is the identity of H({0}).
Since H preserves the identity element, 0N is the zero element of (H(N),+τ ) by
functoriality.

To show that + = +τ , we note that + : H ×H → H is a morphism of functors.
So

+ : (H(N)×H(N),+τ )→ (H(N),+τ )

is a homomorphism of abelian groups. Take (x1, x2), (y1, y2) ∈ H(N)×H(N). We
have

(x1, x2) +τ (y1, y2) = (x1 +τ y1, x2 +τ y2).

Since + is a homomorphism of abelian groups, applying H we get

(x1 + x2) +τ (y1 + y2) = (x1 +τ y1) + (x2 +τ y2).

Now take x1 = y2 = 0. We get

y1 +τ x2 = x2 +τ y1 = y1 + x2.

This shows the two addition laws are the same. �

Now we consider base change of formal groups.

Definition 1.20. (i) Let f : R→ S be a homomorphism of rings. If N ∈ NilS, we
can view N as an R-algebra via f . We denote N[f ] the corresponding R-algebra.
(ii) Let F : NilR −→ Sets be a functor. We define f•F : NilS −→ Sets by
(f•F )(N) = F (N[f ]).

It is easy to see that f•(ÂdR) = ÂdS . If F is a formal group, so is f•F . Then we
get a functor f• : FGR → FGS , where FGR denotes the category of formal groups
over R.
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Theorem 1.21 (Lazard, 1955). Let f : R � S be a surjective homomorphism of

rings. Let G be a formal group over S such that G ∼= ÂdS. Then there is a formal

group F over R such that F = ÂdR and f•F = G.

The proof can be found in [Z].

Lazard’s Theorem shows that, under some conditions, a formal group of the
form Âd can be lifted. How about the morphism? More precisely, let G1, G2 be two
formal groups over S and F1, F2 two formal groups over R such that f•Fi = Gi.
Let α : G1 → G2 be a homomorphism of formal groups. Does α lift to F1 → F2?

The answer is no in general. Let us consider the following example.

Example: Consider Ĝa over R. As a functor, Ĝa(N) = (N,+). A homomorphism

f : Ĝa → Ĝa is given by a formal power series f(X) ∈ R[[X]] such that fN : N → N
is a homomorphism for all N ∈ NilR. So f is a homomorphism if and only if

(1.4) f(S + T ) = f(S) + f(T )

in R[[S, T ]]. Write f =
∑
anX

n, fn = anX
n. The equation (1.4) is equivalent to

an(T + S)n = anT
n + anS

n, ∀n ≥ 0.

So a0 = 0. If R is torsion free, it is easy to see that an = 0, n ≥ 2. If R is p torsion,
then an = 0 for all n such that n is not a power of p. So we get

Proposition 1.22. (1) If R is torsion free, then End(Ĝa) = R.
(2) If p ·R = 0 for a prime p, let ϕ : R→ R be the Frobenius, i.e., ϕ(r) = rp. Then

EndĜa ∼= Rϕ[[T ]], where Rϕ[[T ]] is an algebra defined as follows: Rϕ[[T ]] is R[[T ]]
as an R-module and the multiplication is defined by

rmT
m · rnTn = rmϕ

m(rn)Tm+n.

Proof. (1) As we have seen, f is a homomorphism if and only if f is defined by

f(X) = rX. Now associating Φ to r defines the isomorphism End(Ĝa)→ R.

(2) We have f ∈ End(Ĝa) if and only if f is defined by f(X) =
∑
i aiX

pi . Associ-

ating f to the formal power series
∑
i aiT

i defines a bijection End(Ĝa) ∼= Rϕ[[T ]].
It is easy to see this map preserves the multiplication. �

Now consider the ring homomorphism f : Z → Fp. It is easy to see that

f•(Ĝa)Z = (Ĝa)Fp . By the above proposition, there are many homomorphisms

Φ : (Ĝa)Fp → (Ĝa)Fp which cannot be lifted.

We have a weaker partial solution to the above problem.

Proposition 1.23. Let f : S � R be a surjective homomorphism of rings with
kernel a such that a2 = 0. Assume la = 0 for some l ∈ N. Let F,G : NilS → Ab be
two functors and G is a formal group. Assume α : f•F → f•G is a homomorphism.
Then there exists α′ : F → G such that f•α

′ = lα.

Proof. Given N ∈ NilS , we have to define α′N : F (N) → G(N). Given ξ ∈ F (N).
Let ξ̄ be the image of ξ under the map F (N) → F (N/aN). Note that N/aN
is in fact an R-algebra. So F (N/aN) = f•F (N/aN). We get a homomorphism
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αN/αN : F (N/aN)→ G(N/aN). Let η̄ be the image of ξ̄ under this map. Since G
is a formal group, we have the following exact sequence:

0 −→ G(aN) −→ G(N) −→ G(N/aN) −→ 0.

Let η, η′ ∈ G(N) be two lifts of η̄. Then η − η′ ∈ G(aN). Since a2 = 0, we have
G(aN) = aN ⊗S tG(S). Since la = 0, we see lη = lη′. Now we define α′N (ξ) = lη.
By the above discussion, α′N is well-defined and satisfies f•α

′ = lα. �

Definition 1.24. Let R be a commutative ring with 1. Let us be given a pair
(C, ε), where C is an R-algebra with structure morphism i : R → C and ε is an
R-algebra homomorphism C → R. The pair (C, ε) is called an augmented algebra if
ε ◦ i = idR. If (C, ε) is an augmented algebra, we call C+ = Kerε the augmentation
ideal. We have C = R ⊕ C+. A homomorphism of augmented algebras f : A→ B
is a homomorphism of R-algebras and εA = εB ◦ f .

Notations. We give a list of the notations which will be used later. Let A,B
be two R-modules (R-algebras, R-augmented algebras or unitary R-algebras). We
denote

HomR(A,B) the set of R-module homomorphisms.
Homa(A,B) the set of R-algebra homomorphisms, i.e., maps preserving

the R-module structure and multiplicative structure.
Homua(A,B) the set of homomorphisms of unitary rings, i.e., maps which not

only preserve the algebra structure but also preserve 1.
Homaa(A,B) the set of homomorphisms of augmented algebras.

It is easy to see that Homaa(A,B) = Homua(A,B). If we consider topological
rings, we add a “c” in the subscript to denote the continuous homomorphisms. For
example, if A,B are two topological R-algebras, Homca(A,B) will denote the set
of continuous algebra homomorphisms from A to B.

Given N ∈ NilR, we can form an augmented algebra A. As the R-module
A = R ⊕ N with multiplication defined by: (r, n)(r′, n′) = (rr′, rn′ + r′n + nn′),
See the Example after Definition 1.1. Let ε : A→ R be the projection map. Then
the augmentation ideal A+ is N . For any other nilpotent algebra M , we have

Homa(N,M) = Homaa(A,R⊕M) = Homua(A,R⊕M).

Let AugnR denote the category of augmented algebras with nilpotent augmenta-
tion ideals. The above discussion shows that we established an equivalence

AugnR → NilR

A 7→ A+

with inverse N 7→ R⊕N .

Since

SpecA× SpecB = Spec(A⊗B),

we can see that

hA+ × hB+ = hR⊗B++A+⊗R+A+⊗B+ ,

where hN : NilR → Sets is the functor defined by hN (M) = Homa(N,M).
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Definition 1.25. Let (C, ε) be an augmented R-algebra given with a chain of ideals

c0 ⊃ c1 ⊃ c2 ⊃ c3 · · · , ci ⊂ C+,

such that C/ci is a nilpotent augmented algebra. We define a functor SpfC :
NilR → Sets by

(1.5) SpfC(N) = lim−→
t∈N

Homa(C+/ct, N)

We endow C with the linear topology defined by the ideals ct. Then an element
of 1.5 is just a continuous algebra homomorphism C+ → N , where we give N the
discrete topology. Indeed ϕ : C+ → N continuous means that there is a number t
such the ϕ|ct = 0. We will write:

SpfC(N) = Homca(C+, N).

We use Spf(C, {ct}) to denote the functor if we want to emphasize that SpfC is
defined by the ideals ct.

Example: Let C = R[[X1, . . . , Xn]], ct = (X1, . . . , Xn)t. Then SpfC = ÂnR.

Definition 1.26. The functor SpfC is called strictly pro-representable if
(1) C+/ct is finitely generated R-module for any t ≥ 0;
(2) for every t ≥ 0, there is a sub-R-module ut ⊂ C+ such that C+/ut is a finitely
generated projective R-module, such that the two sequences {ut} and {ct} of sub-
modules of C are cofinal.

Note that in the definition (1.26), the functor Spf(C, {ct}) is the same as Spf(C, {ut})
by the cofinality condition in (2).

Notations as above, put Ĉ = lim←−C/ct. We have a surjective homomorphism

Ĉ � C/cs. Denote the kernel by ĉs, we have isomorphisms Ĉ/ĉs ∼= C/cs. Then

Spf(Ĉ, {ĉt}) = Spf(C, {ct}).

Definition 1.27. Let G = SpfC : NilR → Ab be a strictly pro-representable
functor, i.e., that F ◦G is a strictly pro-representable functor, where F : Ab→ Sets
is the forgetful functor. Define the hyperalgebra HG of G by

HG = HomcR(C,R).

Lemma 1.28. There is an augmented algebra structure on HG.

Proof. Given f ∈ HG, r ∈ R, define (rf)(x) = rf(x). This gives a natural R-
module structure on HG.

The group law X × X → X gives a homomorphism m∗ : C → C⊗̂C, where
C⊗̂C = (C⊗C, ct⊗C+C⊗ ct), i.e., as an augmented algebra, C⊗̂C is just C⊗C,
and the chain of the ideals is defined by {ct ⊗ C + C ⊗ ct}. The multiplication of
HG is defined as follows. Given ξ, η ∈ HG, put ξ · η = (ξ ⊗ η) ◦m∗,

C
m∗ // C ⊗ C

ξ⊗η // R⊗R = R .

This gives an algebra structure on HG.
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For r ∈ R, define fr : R ⊕ C+ → R by fr|R(x) = rx and fr|C+ = 0. This gives
the map i : R → HG. Define ε : HG → R as follows. Since C = R ⊕ C+, any
f ∈ HG can be written as f = f1 ⊕ f2, where f1 : R → R, f2 : C+ → R. Define
ε(f) = f1(1). It is easy to see that ε ◦ i = idR. Hence we get an augmented algebra
structure on HG. It is easy to check that H+

G = HomcR(C+, R). �

Definition 1.29. Define a functor (GmHG)∧ : NilR → Ab by

(GmHG)∧(N) = (1 +H+
G ⊗R N)×.

As in the definition of Gm, (1 +H+
G ⊗RN)× means the units in R⊕ (H+

G ⊗RN) ⊂
HG ⊗A of the form 1 + x, x ∈ H+

G ⊗R N , where A = R⊕N .

Lemma 1.30. The functor (GmHG)∧ is a formal group.

Proof. Since H+
G = lim−→HomR(C/ut, R), and C/ut is finitely generated projective

R-module, H+
G is a flat R-module. So the functor (GmHG)∧ is exact. The second

condition of formal groups is easy to verify. �

Recall that G = SpfC, where C = R⊕ C+. Given N ∈ NilR, we have

G(N) = Homca(C+, N) = lim−→
t

Homa(C+/ct, N)

⊂ lim−→
t

HomR(C+/ct, N) = lim−→
t

HomR(C+/ut, N).

Since C+/ut is a finitely generated projective module, we have HomR(C+/ut, N) ∼=
HomR(C+/ut, R)⊗N 1.

So we have

X(N) ⊂ lim−→(HomR(C+/ut, R)⊗N) = (lim−→HomR(C+/ut, R))⊗N = H+
G ⊗N,

here we use the fact that lim−→ and ⊗ commute.

Definition 1.31. Define a natural transformation Φ : G = SpfC → (GmHG)∧ by

ΦN : G(N)→ (GmHG)∧(N) = (1 +H+
G ⊗R N)×

ξ 7→ 1 + ξ.

On the right hand side, using the inclusion G(N) ⊂ H+
G⊗RN , we identify ξ ∈ G(N)

with an element of H+
G ⊗R N .

1 For any finitely generated projective R-module P , we have Hom(P∨,M) ∼= P ⊗M , where
P∨ = Hom(P,R) is the dual module of P . In fact, we have a canonical homomorphism P ⊗M →
Hom(P∨,M) defined by p ⊗m 7→ (f 7→ f(p)m). If P is free and finitely generated, this map is
obviously an isomorphism. In general, take a resolution 0→ N → F → P → 0, with F is finitely
generated R-module. Since P is projective, this sequence is split exact, so N is also projective,

i.e., P ⊕N = F . So P∨ ⊕N∨ = F∨ is also free. By this we see that P∨ is also projective. The

split exactness shows that we have the following commutative diagram with exact rows:

0 // N ⊗M //

a

��

F ⊗M //

b

��

P ⊗M //

c

��

0

0 // Hom(N∨,M) // Hom(F∨,M) // Hom(P∨,M) // 0

b is an isomorphism by the above discussion. The 5-Lemma shows that a is injective and c is
surjective. Since P and N are symmetric, we can change the roles of N and P to see both a
and c are isomorphisms. Now apply this to HomR(C+/ut, N) = (C+/ut)∨, which is also finitely

generated and projective, as we have seen.
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Lemma 1.32. For any N ∈ NilR, the map ΦN is a group homomorphism.

We first show Lemma 1.32.

Proof of Lemma 1.32. Let A = R ⊕N be the deduced augmented algebra. Recall
that G = SpfC. By definition, G(N) = G(A) = Homcaa(C,A) = Homcua(C,A).
Given ξ1, ξ2 ∈ G(A), then ξi : SpecA → G. We need to show that ΦN (ξ1 + ξ2) =
ΦN (ξ1)ΦN (ξ2).

We first check what the morphism ξ1 + ξ2 is. Let ∆ : SpecA→ SpecA× SpecA
be the diagonal morphism. We know that ∆ corresponds to the multiplication
homomorphism m : A ⊗R A → A : m(x1 ⊗ x2) = x1x2. The right triangle of the
following diagram

SpecA

∆

�� ξ1+ξ2

""EEEEEEEEEEEEEEEEEEEEEE

SpecA× SpecA

uuj j j j j j j j
ξ1×ξ2

��
SpecC/ct × SpecC/ct // G×G

+ // G

is commutative, since the composite of the vertical arrows is (ξ1, ξ2). This shows
that ξ1 + ξ2 = + ◦ (ξ1 × ξ2) ◦ ∆. Since ξi ∈ Homcaa(C,A) is continuous, there is
t ∈ N such that ξi factor through C/ct for both i = 1, 2. So we have the left triangle
of the above diagram. The bottom line of the diagram is obtained from

C
δt // C/ct ⊗ C/ct ,

where δt is the composite

C
m∗C // C ⊗ C // C/ct ⊗ C/ct .

Here m∗C is the map obtained from the multiplicative structure on X, see the proof
of Lemma 1.28. So ξ1 + ξ2 corresponds to the following homomorphism

C
δt // C/ct ⊗R C/ct

ξ1⊗ξ2 // A⊗A m // A

Recall (Lemma 1.28) that the multiplication in HG is defined as follows. Given
h1, h2 ∈ HG, then h1 · h2 = (h1 ⊗ h2) ◦ δt for t large enough.

As before, there is an isomorphism

HG ⊗R A ∼= HomcR(C,A)

h⊗ a 7→ (c 7→ h(c)a).

Suppose ξi corresponds to hi ⊗ ai under this isomorphism. The above discussion
shows that ξ1 + ξ2 corresponds to (h1 · h2)a1a2. The map G(A) → (HG ⊗ A)× is
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obtained from the inclusion G(A) ⊂ HomcR(C,A), therefore preserves the multi-
plicative structure. By the definition of ΦN , we have a commutative diagram

G(N)
ΦN //

∼=
��

(1 +H+
G ⊗N)×� _

��
G(A) // (HG ⊗A)×

So ΦN is a group homomorphism. �

The homomorphism ΦN is obtained from an inclusion, so it is an embedding.
Next, we will describe the image of ΦN .

Let m : C ⊗ C → C be the multiplication. It is obtained from the diagonal
morphism ∆ : G → G × G. Since ∆ is a homomorphism of group functors, the
deduced map

m∗ : HG → HG ⊗HG

is a homomorphism of algebras.

Proposition 1.33. We have

G(A) =
{
x ∈

(
1 +H+

G ⊗R A
+
)× |m∗Ax = x⊗ x

}
where m∗A = m∗ ⊗ idA : HG ⊗A→ HG ⊗HG ⊗A, and x⊗ x is identified with the
image of x⊗x under the map idHG⊗HG ⊗mA : HG⊗HG⊗A⊗A→ HG⊗HG⊗A.

Proof. Given (ρ : C → A) ∈ G(A) = Homcaa(C,A), then ρ(1) = 1 since ρ respect
the augmentation structure. Since ρ is a an algebra homomorphism, we have a
commutative diagram

C ⊗ C m //

ρ⊗ρ
��

C

ρ

��
A⊗A

mA // A

Given x ∈ HG ⊗ A = HomcR(C,A), x corresponds a homomorphism x̂ : C → A.
Assume x̂ respect the augmentation, i.e., x̂(1) = 1. Then x̂ is a homomorphism of
commutative rings with 1 if and only if the above diagram commutes for ρ = x̂,
i.e., x ∈ G(A) if and only if x̂m = mA ◦ (x̂⊗ x̂). It is easy to see that

m∗A(x) = x̂ ◦m, x⊗ x = mA ◦ (x̂⊗ x̂).

Hence we get the proposition. �

We begin with some general notions.

Definition 1.34. Let S be an augmented R-algebra. Let S+ be its augmentation
ideal. We define a group functor

(GmS)∧ : NilR −→ Ab

by

(GmS)∧(N) = (1 + S+ ⊗R N)×.



Lectures on p-Divisible Group 17

As we saw in Lemma 1.20, if S+ is a flat R-module, then (GmS)∧ is a formal
group. The construction S 7→ (GmS)∧ is functorial.

Although S → S⊗S, x 7→ x⊗x is not an algebra homomorphism (not additive),
we still have a morphism of group functors

(1.6) (GmS)∧ → (Gm(S ⊗R S))∧

x 7→ x⊗ x.

Explicitly, the map (1.5) is defined by x = 1 + y 7→ x⊗x = 1 + 1⊗ y+ y⊗ 1 + y⊗ y
for x ∈ (1 + S+ ⊗ N)×, y ∈ S+ ⊗R N . Here 1 ⊗ y + y ⊗ 1 + y ⊗ y ∈ [(R ⊗ S+) ⊕
(S+⊗R)⊕ (S+⊗S+)]⊗N = (S⊗S)+⊗N . It is easy to check this is a morphism
of group functors directly.

For any N ∈ NilR, we associate to N a new nilpotent algebra Nab such that
as an R-module, Nab is just N , and the new multiplication on Nab is defined by
(Nab)2 = 0.

Definition 1.35. For any functor H : NilR → Sets, we define the Lie algebra
functor of H

LieH : NilR −→ Sets

by LieH(N) = H(Nab).

If H is left exact, there is a canonical abelian group structure on LieH(N).

Note that H(Nab) = tH(Nab). The difference between the Lie algebra functor
and the tangent functor is that the Lie algebra functor is defined on NilR, while
the tangent functor is defined on ModR.

Definition 1.36. A sequence of group functors H1 → H2 → H3 is called exact if
for any N ∈ NilR, the sequence

H1(N)→ H2(N)→ H3(N)

of abelian groups is exact.

By definition of LieH, the functor Lie is exact.

Now suppose we are given a pro-representable formal group G = SpfC. We have
defined HG = HomcR(C,R).
Remark: HG has a bi-algebra structure defined by m∗ : HG → HG ⊗ HG, so
SpecHG is a group scheme. In literature, SpecHG is called the dual of G. In our
treatment, this plays no role.

Recall that in the last lecture we showed that there is an embedding of formal
groups G :→ (GmHG)∧ and for any N ∈ NilR, the image of G(N) is{

x ∈ (1 +H+
G ⊗N)×|m∗x = x⊗ x

}
.

The above results are summarized in
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Theorem 1.37. We have the following exact sequence of formal groups

0 // G // (GmHG)∧
γ1−γ2 // (Gm(HG ⊗HG))∧

where γ1 is the morphism induced by m∗ : HG → HG ⊗ HG, and γ2 is the map
(1.5), i.e., the morphism induced by ∆ : HG → HG ⊗HG, ∆(x) = x⊗ x.

In the remainder of this section, we assume that R is a Q-algebra. If N ∈ NilR,

y ∈ N , then exp(y) =
∑∞
n=0

yn

n! is well-defined. Let S be any augmented algebra,
H = (GmS)∧. It is easy to see that we have an isomorphism

[S+ ⊗N ]+ → H(N) = (1 + S+ ⊗N)×

y 7→ exp(y)

with inverse 1 + z 7→ log(1 + z). The left hand side [S+⊗N ]+ means S+⊗N with
additive abelian group structure. We also have an isomorphism

LieH(N) ∼= (1 + S+ ⊗Nab)× ∼= S+ ⊗Nab = [S+ ⊗N ]+,

1 + y 7→ y.

So we have an isomorphism

(1.7) exp : LieH
' // H .

Proposition 1.38. Assume R is a Q-algebra. Then for any strictly representable
formal group G, there is an exponential map expG : LieG → G, which is an iso-
morphism functorial in G

Proof. By Theorem 1.37 and the fact that Lie is an exact functor, we have

(∗) 0 // LieG //

expG

���
�
� Lie(GmHG)∧ //

exp

��

Lie(Gm(HG ⊗HG))∧

exp

��
0 // G // (GmHG)∧

γ1−γ2 // (Gm(HG ⊗HG))∧

We check that the right hand side square is commutative. Since γ1 is obtained from
an algebra homomorphism, γ1 commutes with exp by functoriality. We check that
γ2 commutes with exp. Given N ∈ NilR, the homomorphism γ2 is defined by (1.5).
If we identify Lie(GmHG)∧(N) = (1 + H+

G ⊗ Nab)× with H+
G ⊗ N by 1 + y 7→ y,

then Lie(γ1) is defined by y 7→ 1⊗ y + y ⊗ 1 (note y ⊗ y = 0).

(H+
G ⊗Nab)+ //

exp

��

(HG ⊗HG)+ ⊗Nab

exp

��
(1 +H+

G ⊗N)× // (1 + (HG ⊗HG)+ ⊗N)×

So we have to check

exp(1⊗ y + y ⊗ 1) = exp(y)⊗ exp(y).

Note that exp(1⊗ y) =
∑
n≥1

(1⊗y)n

n! = 1⊗ exp(y) since exp(y) =
∑
n≥0

yn

n! . So

exp(1⊗y+y⊗1) = exp(1⊗y) exp(y⊗1) = (1⊗exp(y))(exp(y)⊗1) = exp(y)⊗exp(y).

Consequently, we get the commutativity of the right hand square of diagram (∗).
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The last two vertical arrows of diagram (∗) are isomorphisms by (1.6), so this
diagram induces an isomorphism expG : LieG→ G. �

Theorem 1.39. Assume R is a Q-algebra. Let G = Spf(C, {ct}) be a strictly pro-
representable functor, such that for t large enough, ct ⊂ (C+)2 and C+/(C+)2 is a

free R-module of rank d. Then G ∼= Ĝda.

Proof. By definition, LieG(N) = Homca(C+, Nab). Since (Nab)2 = 0 and ct ↪→
(C+)2 for t large enough, we have

LieG(N) = Homca(C+/(C+)2, N) = N ⊗ (C+/(C+)2)∧ ∼= (N (d),+).

So LieG ∼= Ĝda. Proposition 1.38 shows that G ∼= LieG, hence the theorem. �

Corollary 1.40. Let R be a Q-algebra. If G = SpecA is a group scheme, with A
a nilpotent R-augmented algebra which is finitely generated as an R-module, then
G = 0.

Proof. Assume first that R is a field k. Take C = A with ideals ct = 0. Then the
condition of Theorem 1.39 is satisfied automatically. Hence, by Theorem 1.39, we
have G ∼= Ĝda = Spfk[[X1, . . . , Xd]]. If d 6= 0, A+ is not nilpotent. Hence d = 0, G
is trivial.

For the general case, let m be any maximal ideal of R. Denote the quotient map
R → R/m by κ. Then κ•G = SpecA/mA is a group scheme over the field R/mR.
The above discussion shows A/mA ∼= R/mR. So A+/mA+ = 0. Then Nakayama’s
lemma shows A+

m = 0. Since this is true for all m, we have A+ = 0. �

Remark. 1. The corollary is false if R has characteristic p > 0. Consider the
functor G : NilR → Ab defined by G(N) = {n ∈ N |np = 0}. This is well-defined
since (n1 + n2)p = np1 + np2. It is easy to see that G = SpecR[X]/Xp. Then G is a
non-trivial finite group scheme.
2. The corollary is equivalent to the following Theorem of Cartier. Any finite group
scheme over a field of characteristic 0 is étale.

Definition 1.41. Let R be any commutative ring with 1. Let I be an R-algebra
(maybe without 1). A divided power (pd) structure on I consists of a collection
of maps γi : I → I, i ≥ 1, such that
(1) γ1(x) = x; n!γn(x) = xn, n ≥ 1; γn(ax) = anγn(x).

(2) γn(x+ y) =
∑n−1
i=1 γi(x)γn−i(x) + γn(x) + γn(y).

(3) γp(x)γq(x) =
(
p+q
p

)
γp+q(x).

(4) γp(γq(x)) = (pq)!
p!(q!)q γpq(x).

If there is an N ∈ N+ such that γn1
(x1) . . . γnr (xr) = 0 for all n1 + · · ·+nr ≥ N

and all x1, . . . , xr ∈ I, the divided powers are called nilpotent.

If we define γ0(x) = 1, then we can simplify formula (2). But note that I need
not contain 1.
Example: If R is a Q-algebra, then any R-algebra I has a pd structure defined by
γn(x) = xn

n! . This is the example which motivates the definition.

A non-trivial example in introduced next.
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Let R be a commutative ring with 1. Let p be a fixed prime number. Assume
that for any prime number l 6= p, l is invertible in R. An example satisfying
these conditions is Z(p). Let S be an R-algebra with 1. Consider I = pS. Given

x = py ∈ I with y ∈ S, define γn(x) = pn

n! y
n, n ≥ 1.

Claim: γn defines a pd structure on I.

First, we check that γn is well-defined. It is easy to see the denominator of pn

n! is

prime to p, hence it makes sense in R by our assumption. If pz = 0, because p|p
n

n!
in R, it is easy to see

pn

n!
(y + z)n =

pn

n!
yn.

So γn(x) is independent of the choice of y.

Next, we check that γn(x) satisfies the relations (1)-(4) in Definition 1.41.

If R and S have no Z-torsion, then S ⊂ S⊗ZQ. Under this inclusion, γn(x) = xn

n! .
So γn satisfies (1)-(4).

For the general case, we only show

γn(x+ y) =

n−1∑
i=1

γi(x)γn−i(x) + γn(x) + γn(y).

The other formulas are similarly proven.

Given x, y ∈ I, define a map α : pZ[X,Y ] −→ pS = I by α(X) = x, α(Y ) = y.

Let γ′n(t) = tn

n! , t ∈ pZ[X,Y ]. Then γn(α(t)) = α(γ′n(t)), for all t ∈ pZ[X,Y ].
γn(x + y) = γn(α(X + Y )) = α(γ′n(X + Y )). Since we know the corresponding
formula holds in pZ[X,Y ], the formula holds also in pS.

In this lecture, we treat divided power structure more seriously.

Definition 1.42. Let R be a commutative ring with 1 and let I ⊂ R be an ideal.
A collection of maps γn : I → I, n ≥ 1 is called divided powers(pd in French) if
the following relations are satisfied:

γn(rx) = rnγn(x), r ∈ R, x ∈ I;

n!γn(x) = xn;

γn(x+ y) =

n∑
i=0

γi(x)γn−i(x),

where we set γ0(x) = 1;

γp(x)γq(x) =

(
p+ q

p

)
γp+q(x);

γp(γq(x)) =
(pq)!

p!(q!)q
γpq(x).

More generally, if I is any R-algebra, γn : I → I is called divided powers if this
sequence defines divided powers on 0⊕I in the ring R⊕I. This definition coincides
with Definition 1.41. We can define nilpotent divided powers as in Definition 1.41.
Note that if γn are nilpotent divided powers, then I is nilpotent by the relation
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n!γn(x) = xn.

Example: If R has no Z-torsion, then R ⊂ R⊗Q. So xn

n! ∈ R⊗Q is well-defined.

Suppose I is an ideal of R, then I has divided powers if and only if xn

n! ∈ I.

Proposition 1.43. Let I, J be two R-algebras. Suppose I has divided powers
{γn} , n ≥ 1. Then there is a unique divided power structure {γ̃n} on I ⊗R J
such that γ̃n(x⊗ y) = γn(x)⊗ yn for all x ∈ I, y ∈ J .

The proof is omitted but it is nontrivial.

Let R be a Z(p)-algebra. We consider the polynomial ring A = R[{Xi} , i ∈
M ] in possibly infinitely many indeterminates hi, i ∈ M , where M is a set. Let
a = 〈{Xp

i } , i ∈M〉 be the ideal generated by Xp
i . Let S = A/a. Then S is an

augmented R-algebra. Put xi = Xi(mod a). Then the augmentation ideal S+ of S
is generated by the xi.

Proposition 1.44. There is a unique divided powers structure {γn} on S+ which
satisfies:

γn(xi) = xni /n! for i < p; γn(xi) = 0, i ≥ p.

Proof. First, we assume R has no p torsion. For y ∈ S, we can write y =∑
1≤r≤m arZr, where ar ∈ R and Zr has the form

Xe1
i1
· · ·Xel

il
, 0 ≤ ei < p.

Now y ∈ S+ means Zr 6= 1. So

yn =
∑

j1+···+jm=n

aj11 Z
j1
1 · · · ajmm Zjmm .

Note that for ji ≥ p, Zjii = 0, hence

yn

n!
=

∑
j1+···+jm=n

ji<p

1

j1! · · · jm!
aj11 Z

j1
1 · · · ajmm Zjmm

makes sense and is an element of S+. We are done.

For a general R, take a surjection R1 � R such that R1 has no Z torsion. Sim-
ilarly, we have S1, S

+
1 . The above discussion shows we can define divided powers,

say γ̃n, on S+
1 . Let b = Ker(R1 → R). Then S+

1 → S+ has kernel bS1∩S+
1 = bS+

1 .
We have S+ = S+

1 /bS
+
1 .

Claim: γ̃n is well-defined on equivalence classes defined by bS+
1 , i.e., if y ∈

S+
1 , h ∈ bS+

1 , then γ̃n(y) = γ̃n(y + h).

In fact, we have

γ̃n(y + h) = γ̃n(y) +
∑
i≥1

γ̃n−i(y)γ̃i(h).

But h ∈ bS+
1 has the form

∑
arZ

r with ar ∈ b, Zr are monomials in xi, so for
i ≥ 1,

γ̃i(h) =
∑

j1+···+jm=n
ji<p

1

j1! · · · jm!
aj11 Z

j1
1 · · · ajmm Zjmm ∈ bS+

1 .
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The claim follows.

The claim shows that we can define γn : S1 → S1 by the reduction of γ̃n. We
are done. �

Theorem 1.45. Let k be a field with characteristic p. There exists a set {ai ∈ k|i ∈M},
where M is an index set, such that ae1i1 · · · a

em
im
, 0 ≤ ei < p, make a basis of k over

kp. Such a set {ai ∈ k|i ∈M} is called a p-basis of k. A p-basis exists.

We omit the proof.
Let {ai ∈ k|i ∈M} be a p-basis of k. Let l = k1/p. We can write

l = k[{Ti}i∈M ]/(T pi − ai).

Then

l ⊗k l = k[{Ti, T ′i}i∈M ]/(T pi − ai, T
′
i
p − ai).

If we put Xi = Ti − T ′i , we can write

l ⊗k l = k[{Ti, Xi}i∈M ]/(T pi − ai, X
p
i ) = l[{Xi}i∈M ]/(Xp

i ).

By Proposition 1.30, we can define a divided power structure on (l⊗k l)+. Consider
the multiplication l ⊗k l → l. We use I to denote the kernel of the multiplication
map. It is not hard to see that the Xi generate I, hence I = (l ⊗k l)+.

Corollary 1.46. The kernel of the multiplication l ⊗k l → l has a divided power
structure (not unique, relies on the choice of a p-basis).

Remark: If M is infinite, the kernel I is not nilpotent, since Xi1 · · ·Xin 6= 0 for
different ij . Corollary 1.46 shows that we can define a pd structure on non-nilpotent
ideals.

We can generalize Proposition 1.38 as follows.

Lemma 1.47. Let F = (GmS)∧ for an augmented R-algebra S. Let N ∈ NilR
with nilpotent divided powers {γn}. Then we have an isomorphism

exp : LieF (N) = (1 +Nab ⊗R S+)× → (1 +N ⊗ S+)×

1 + n⊗ s 7→
∑
l≥0

γl(n)⊗ sl

Proof. By Proposition 1.29, for l ≥ 1, n ⊗ s 7→ γl(n) ⊗ sl defines a divided power
structure on N ⊗ S+. It is easy to see that

(N ⊗ S+)+ → (1 +N ⊗ S+)×

n⊗ s 7→
∑
l≥0

γl(n)⊗ sl

is a group homomorphism. It is an isomorphism since it has an inverse

1− n⊗ s 7→ −
∑
l≥1

(l − 1)!γl(n)⊗ sl.

Since LieF (N) = (1 + Nab ⊗R S+)× is isomorphic to (N ⊗R S+)+ by 1 + y 7→ y,
we are done. �



Lectures on p-Divisible Group 23

Proposition 1.48. Take N ∈ NilR with nilpotent divided power structures γn :
N → N . Let G be a strictly pro-representable formal group. Then we have an
isomorphism

expN : LieG(N)
' // G(N)

functorial in (N, {γn}) and G. This exponential map is called the Grothendieck-
Messing exponential.

Proof. The proof is the same with the proof of Proposition 1.24, except that we
have to replace the isomorphism (1.6) by Lemma 1.47. �

Let G : NilR → Ab be a strictly pro-representable formal group such that
G = SpfC. Given N ∈ NilR, and divided powers γ = {γn} on N . In Proposition
1.48, we showed that we have the Grothendieck-Messing exponential isomorphism
LieG(N)→ G(N).

Let us be given a surjective homomorphism ρ : S � R of rings with 1. Let
a = Kerρ. Suppose a has pd structure δ = (δn). For any N ∈ NilS , we know

that a ⊗S N has pd structure δ̃m(a ⊗ x) = δm(a) ⊗ xm. Since N is nilpotent, δ̃ is
nilpotent. We have an exact sequence

0→ a→ S → R→ 0,

hence
a⊗S N → N → N ⊗S (S/a) = N/aN → 0.

Let G be a strictly pro-representable formal group. Since G is exact, we have the
exact sequence

(1.8) G(a⊗S N) // G(N)
ρN // G(N/aN) // 0

Note that we have an isomorphism LieG(a⊗SN) ∼= G(a⊗SN). The sequence (1.7)
is also left exact if N is a flat S-module.

Fix a prime number p once and for all.

Lemma 1.49. Let R be a ring with 1. Let G be a strictly pro-representable formal
group over R. Given N ∈ NilR. Assume
(i) xp = 0 for each x ∈ N ;
(ii) p ·N = 0.
Then p ·G(N) = 0.

Proof. Let H = (GmHG)∧. We know that G ↪→ H. So it suffice to show that
p ·H(N) = 0. Consider 1 + y ∈ H(N) = (1 +H+

G ⊗N)× with y ∈ H+
G ⊗N . Then

(1 + y)p = 1 + yp = 1 by the assumptions. We are done. �

In the sequence of (1.7), if we assume p · a = 0, then the divided power structure
shows ap = p!δp(a) = 0 for any a ∈ a. So condition (i) in Lemma 1.35 is automati-
cally satisfied. Hence p ·G(a⊗S N) = 0. In particular, p ·Ker(ρN ) = 0.

Definition 1.50. Let R be a commutative ring with 1 such that p is nilpotent in
R. Let G be a formal group over R such that G ∼= ÂdR. Consider the multiplication
by p map pG : G → G (i.e., for any N ∈ NilR, x ∈ G(N), pG(x) = p · x).
Then pG is defined by formal power series f1(X1, . . . , Xd), . . . , fd(X1, . . . , Xd) ∈
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R[[X1, . . . , Xd]] with fi(0) = 0. The formal group G is called a p-divisible (formal)
group if each Xi is nilpotent in

R[[X1, . . . , Xd]]/(f1(X1, . . . , Xd), . . . , fd(X1, . . . , Xd)).

Example: Let K be a field of a characteristic p. Let A be an abelian variety over
K. Then the completion of A along the origin

Â(N) = Ker(A(K ⊕N)→ A(K))

is a p-divisible group.

Theorem 1.51 (Weierstrass Preparation Theorem). Assume that G is a p-divisible
group. Notations as in Definition 1.50. Then the homomorphism

R[[X1, . . . , Xd]]→ R[[X1, . . . , Xd]]

Xi 7→ fi

is faithfully flat, finite, and

R[[X1, . . . , Xd]]/(f1(X1, . . . , Xd), . . . , fd(X1, . . . , Xd))

is a finite projective R-module.

Recall that a ring homomorphism A→ B is called faithfully flat if any sequence
of A-modules

0→M → N → P → 0,

is exact if and only if

0→M ⊗A B → N ⊗A B → P ⊗A B
is exact. The proof of Theorem 1.51 can be found in [Z].

Corollary 1.52. The kernel G(p) of pG is SpecR[[X1, . . . , Xd]]/(f1, . . . , fd). This
G(p) is a finite flat group scheme over R.

Note if ρ : A → B is a faithfully flat morphism of rings, then ρ is injective. In
fact, by faithful flatness, it suffice to show ρ⊗A B : A⊗A B → B⊗A B is injective.
But ρ⊗A B has a section b1 ⊗ b2 7→ b1b2, hence it is injective.

Corollary 1.53. Let G be a p-divisible group. Then pG is “surjective” in the
following sense. Let F : Nil→ Ab be any left exact functor. Given

G
pG // G

α //

β
// F

such that α · pG = β · pG, then α = β.

Proof. For simplicity, we write X for (X1, . . . , Xd) and f = (f1, . . . , fd). Note that

Hom(G,F ) = lim←−
m

Hom(SpecR[[X]]/(X)m, F )

= lim←−
m

F (R[[X]]/(X)m),

where the last equality follows from Yoneda’s Lemma. So given α, β ∈ Hom(G,F ),
there are two projective systems {αm} , {βm} with αm, βm ∈ F (R[[X]]/(X)m).
Since

p∗G : R[[X]]→ R[[X]]



Lectures on p-Divisible Group 25

Xi 7→ fi

is faithfully flat,

R[[X]]/(X)m → R[[X]]/(f)m

is also faithfully flat, hence injective. Since F is left exact, we have an injective
map

F (R[[X]]/(X)m)→ F (R[[X]]/(f)m).

This map is induced by p∗G, so it maps αm to αm ◦pG. The assumption means that
αm ◦ pG = βm ◦ pG. The injectivity implies αm = βm, for any m. Hence α = β. �

Lemma 1.54. If G is a p-divisible group over S, then f•G is a p-divisible group
over R.

Proof. Suppose that as an S-functor, the multiplication by p map pG : G → G is
defined by (f1, . . . , fd) with fi ∈ S[[X1, . . . , Xd]]. Let f̄i ∈ R[[X1, . . . , Xd]] be the
image of fi under the map f : S → R. Then pf•G : f•G → f•G is defined by
(f̄1, . . . , f̄d). Now the assertion is clear. �

Lemma 1.55 (Rigidity Lemma for p-Divisible Groups). Let f : S → R be a
surjective homomorphism, denote its kernel by a. Assume that there are natural
numbers n,m such that pnS = 0 and ap

m

= 0 for all a ∈ a. Let G be a p-divisible
group over S. Let F be a strictly pro-representable formal group. Then the map

HomS(G,F )→ HomR(f•G, f•F )

α 7→ f•α

is injective, i.e., if α, β : G → F are two morphisms of group functors such that
f•α = f•β, then α = β.

Proof. We first assume m = n = 1, i.e., p · a = 0 and ap = 0 for any a ∈ a. Given
any N ∈ NilS , we have a commutative diagram (note that F is an exact functor)

G(N) //

αN−βN
��

αN−βN

zzu u
u

u
u

G(N/aN)

αN/aN−βN/aN
��

0 // F (aN) // F (N) // F (N/aN)

Since N/aN is an S/a = R-algebra, then by assumption, αN/aN = βN/aN . Since
the above diagram is commutative, αN − βN factors through F (aN). Because
p · aN = 0 and for any x ∈ aN we have xp = 0, we conclude that p · F (aN) = 0 by
Lemma 1.49. So p ·αN = p ·βN for any N . Since αN is a group homomorphism, we
have p·αN (x) = αN (pG(x)). Hence αN ◦pG = βN ◦pG for any N . So α◦pG = β◦pG.
Now by Corollary 1.53, we get α = β. This completes the proof for m = n = 1.

For m = 1 and general n, we can reduce the lemma to the case m = n = 1 by
considering the following sequence

S = S/pnS → S/pn−1S → · · · → S/pa→ R.

For a general m, put ar = 〈xpr |x ∈ a〉. The lemma reduces to the above case on
considering

S = S/am → · · · → S/a1 → S/a0.

�
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Lemma 1.56. Suppose f : S → R is faithfully flat. Then for any S-module M ,
we have an exact sequence

0 // M // M ⊗S R
π1−π2 // M ⊗S R⊗S R ,

where the map M → M ⊗S R is defined by m 7→ m⊗ 1 and π1(m⊗ r) = m⊗ r ⊗
1, π2(m⊗ r) = m⊗ 1⊗ r.

A proof can be found in [Z]. It is omitted here.

Proposition 1.57. Suppose that f : S → R is faithfully flat and p ·S = 0. Assume
that rp ∈ S for any r ∈ R (note that this makes sense, since f is injective by faithful
flatness). Let G be a p-divisible group over S. Let F be a strictly pro-representable
formal group over S. Then the map

HomS(G,F )→ HomR(f•G, f•F )

α 7→ f•α

is bijective.

Proof. We first show the surjectivity of the given map. To show the surjectivity,
given a homomorphism α̃ : f•G → f•F , we want to construct a homomorphism
α : G→ F such that f•α = α̃.

Let π1, π2 be the homomorphisms R→ R⊗SR defined by π1(r) = r⊗1, π2(r) =
1⊗r. Let GR⊗SR = (π1f)•G = (π2f)•G (the last equality holds, because, f(s)⊗1 =
1⊗ f(s) for s ∈ S, i.e., the S-module structures on R⊗S R defined by π1f and π2f
are the same). Define FR⊗SR similarly. Let α̃i = (πi)•α̃ : GR⊗SR → FR⊗SR for
i = 1, 2.

Claim: α̃1 = α̃2.
Consider the multiplication map m : R ⊗S R → R defined by m(r1 ⊗ r2) = r1r2.
By definition, mπ1 = mπ2 = idR. So α̃ = (mπi)•α̃ = m•α̃i. In particular, we have
m•α̃1 = m•α̃2. This means α̃1 and α̃2 have the same image under the map

Φ : HomR⊗SR(GR⊗SR, FR⊗SR)→ HomR(m•(GR⊗SR),m•(FR⊗SR)),

Hence to prove the claim, it suffice to show Φ is injective. Let a = Ker(m). Note
that m is surjective. Hence by Lemma 1.55, it suffice to show that p · a = 0 and
ap = 0 for any a ∈ a. Now p · a = 0 holds by assumption. It is easy to see that a is
generated by r1 ⊗ r2 − r2 ⊗ r1, r1, r2 ∈ R. Since rp ∈ S for any r ∈ R, we have

(r1 ⊗S r2 − r2 ⊗S r1)p = rp1 ⊗S r
p
2 − r

p
2 ⊗S r

p
1 = 0.

We get the claim.

For any N ∈ NilS , by Lemma 1.56, we have an exact sequences

0 // N // N ⊗S R
π1−π2 // N ⊗S R⊗S R .
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Applying the exact functors G and F , we get the following diagram with exact
rows,

0 // G(N) //

α

���
�
�

G(N ⊗S R)
π1−π2 //

α̃

��

G(N ⊗S R⊗S R)

α̃1=α̃2

��
0 // F (N) // F (N ⊗S R)

π1−π2 // F (N ⊗S R⊗S R)

It is easy to see that
πi ◦ α̃ = α̃i ◦ πi,

so we get the commutativity of the right hand square. Then it is follows that there
is an α : G(N) → F (N) such that the diagram is commutative. So we get the
surjectivity.

If we have two α, α′ ∈ HomS(G,F ) such that f•α = f•α
′ = α̃, then it is easy to

see α = α′ by the above commutative diagram. We are done. �

Corollary 1.58. Let k be a field of characteristic p. Put l = k1/p. Let G (resp.F )
be a p-divisible formal group (resp. a strictly pro-representable formal group) over
k. Then

Homk(G,F )→ Homl(Gl, Fl)

is a bijection, where Gl = i•G, i : k → l is the inclusion.

This is a direct consequence of Corollary 1.57.
Remark: This corollary is false if G is not a p-divisible group. For example, take
G = F = Ĝa. Since pG = 0, Ĝa is not a p-divisible group. It is easy to see the
corollary is false by Proposition 1.22.

In the above remark, we saw that Ĝa is not a p-divisible group. We claim that
G = Ĝm is a p-divisible group over R if p · R = 0. For any N ∈ NilR, any n ∈ N ,
(1 +n)p = 1 +np. Hence, the multiplication pG is defined by f(X) = Xp ∈ R[[X]].

Then X is nilpotent in R[[X]]/(Xp). Hence Ĝm is a p-divisible group. In particular,

if k is a field of characteristic p, then Ĝm is a p-divisible group over k. Generally,
we have

Proposition 1.59. Let k be a field of characteristic p. If G is a formal group such
that G ∼= Â1 and pG is nontrivial, then G is a p-divisible group.

Proof. Suppose pG is defined by a power series f(X) ∈ k[[X]]. Since pG is non-
trivial, f(X) is non-zero. We can write

f(X) = Xh(a0 + a1X + · · · ), ai ∈ k, a0 6= 0.

Then a0 + a1X + · · · is a unit in k[[X]]. Hence

k[[X]]/(f(X)) ∼= k[[X]]/(Xh),

and X is nilpotent in k[[X]]/(f(X)). �
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2. Witt Rings and Display

Fix a prime p once and for all. Consider the following polynomials with coeffi-
cients in Z,

W0 = X0,
W1 = Xp

0 + pX1,
· · · · · ·
Wn = Xpn

0 + pXpn−1

1 + · · ·+ pn−1Xp
n−1 + pnXn.

Lemma 2.1. Let R be a commutative ring with 1 such that p is invertible in R.
Then for any n ≥ 0, the map

(W0, . . . ,Wn) : Rn+1 → Rn+1,

(x0, . . . , xn) 7→ (W0(x0),W1(x0, x1), . . . ,Wn(x0, . . . , xn))

is bijective. The Rn+1 on the left inherits a new ring structure from the usual ring
structure of Rn+1 on the right. Write Wn(R) for this new ring structure.

The lemma is easy to see.

In the ring Wn(R), we can write the additive law as
(2.1)

(X0, . . . , Xn) +W (Y0, . . . , Yn) = (S0(X0, Y0), . . . , Sn(X0, . . . , Xn, Y0, . . . , Yn)).

Here the subscript W means that +W is the additive law in Wn(R) and Si are
polynomials in Z[ 1

p ][X0, . . . , Xi, Y0, . . . , Yi] which are uniquely determined by

(2.2) Wi(S0, . . . , Si) = Wi(X0, . . . , Xi) + Wi(Y0, . . . , Yi), 0 ≤ i ≤ n.
Similarly we have polynomials Pi ∈ Z[ 1

p ][X0, . . . , Xi, Y0, . . . , Yi] such that

(2.3) (X0, . . . , Xn)×W (Y0, . . . , YN ) = (P0, . . . , Pn).

Here ×F means the multiplicative law in Wn(R).

Next, we want to show that the polynomials Si, Pi defined above have coefficients
in Z. Consequently, for any ring R, we can define a new ring structure on Rn+1 by
formulas (2.1) and (2.3) directly.

Proposition 2.2. Let R be a ring without p torsion. Assume that there is a ring
homomorphism τ : R→ R such that τ(x) ≡ xp(mod p). Consider the map

(W0, . . . ,Wn) : Rn+1 → Rn+1

defined as in Lemma 2.1. Consider (u0, . . . , un) ∈ Rn+1. Then (u0, . . . , un) is
in the image of the map (W0, . . . ,Wn) if and only if τ(ui) ≡ ui+1(mod pi+1) for
0 ≤ i ≤ n− 1.

Proof. First we claim that τ(xp
m

) ≡ xpm+1

(mod pm+1) for any m ≥ 0.

For m = 0 the claim follows from the assumption. For m = 1, τ(xp) = τ(x)p ≡
xp

2

(mod p2). The general case can be deduced by induction.

Assume there are xi ∈ R such that um = Wm(x0, . . . , xm). Then

τ(um)− um+1



Lectures on p-Divisible Group 29

= τ(xp
m

0 + pxp
m−1

1 + · · ·+ pmxm)− (xp
m+1

0 + pxp
m

1 + · · ·+ pmxpm + pm+1xm+1).

By the above claim, it is easy to see if i ≤ m, we have

τ(pixp
m−i

) ≡ pi(xp
m−i+1

)(mod pm+1.)

Hence τ(um) ≡ um+1(mod pm+1).

Conversely, suppose we are given (u0, . . . , un) ∈ Rn+1 such that

τ(um) ≡ um+1(mod pm+1).

We will construct xi by induction such that um = Wm(x0, . . . , xm). First x0

must be u0. Suppose that we defined x0, . . . , xm−1. We have seen that τ(um−1) ≡
(xp

m

0 +pxp
m−1

1 · · ·+pm−1xm−1)(mod pm). So um−(xp
m

0 +pxp
m−1

1 · · ·+pm−1xm−1) ≡
um−τ(um−1) ≡ 0(mod pm). So there is an xm ∈ R such that um = xp

m

0 +pxp
m−1

1 +
· · ·+ pm−1xm−1 + pmxm. We are done. �

Corollary 2.3. The polynomials Si defined by (2.1) or (2.2) have coefficients in
Z.

Proof. Let A = Z[X0, . . . , Xn, Y0, . . . , Yn]. Then A has no p torsion. We first
justify that Si is uniquely determined by (2.2). In fact, A ⊂ A ⊗ Z[ 1

p ], Wn(A) ⊂
Wn(A)⊗Z[ 1

p ] and (W0, . . . ,Wn) : Wn(A⊗Z[ 1
p ])→ (A⊗Z[ 1

p ])n+1 is an isomorphism.

So (W0, . . . ,Wn) : Wn(A) → An+1 is injective. So Si is uniquely determined by
the formula (2.2).

Define a ring homomorphism τ : A → A by τ(Xi) = Xp
i , τ(Yi) = Y pi . It is easy

to see that τ(f) ≡ fp(mod p).

Now let um = Wm(X0, . . . Xm) + Wm(Y0, . . . , Ym). Since Si is uniquely deter-
mined by the formula (2.2), it suffice to show that (u0, . . . , un) is in the image
of (W0, . . . ,Wn) : Wn(A) → An+1. By Proposition 2.2, we need to check that
τ(um) ≡ um+1(mod pm+1). This is obvious from

τ(Wm(X)) ≡Wm+1(X)(mod pm+1).

�

We can similarly prove that Pi has coefficients in Z.

The above results are summarized in

Theorem 2.4. The polynomials defined by (2.1) and (2.3) have coefficients in
Z. For any ring R (possibly without 1), the set Rn+1 equipped with addition and
multiplication defined by (2.1) and (2.3) forms a ring Wn(R).

Proof. We have to show that the addition and multiplication satisfy the associative
law and distributive law. But these laws are just identities in Si, Pi. These identities
hold if p is invertible in R. Since Si, Pi have coefficients in Z, these identities are
independent of the choice of R. We are done. �

Definition 2.5. Let W (R) be the set {(x0, . . . , xn, . . . )|xi ∈ R} equipped with the
addition and multiplication defined by (2.1), (2.3). Then W (R) is a ring. It is called
the Witt ring of R.
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By definition,

W = (Wn;n ≥ 0) : W (R)→
∞∏
0

R

is a ring isomorphism. For any n, we have a map

W (R)→Wn(R)

(x0, x1, . . . ) 7→ (x0, . . . , xn).

It is a ring homomorphism, by definition.

Lemma 2.6. The map
V : W (R)→W (R)

V (x0, x1, . . . ) = (0, x0, x1, . . . )

is a group endomorphism of the additive group (W (R),+). It is called the Ver-
schiebung morphism of W (R).

Proof. For any ξ ∈ W (R), it follows from the definition that Wn(V ξ) = 0 if n = 0
and Wn(V ξ) = pWn−1(ξ) if n > 0. Using the fact that Wn : Wn(R) →

∏n
0 R is a

ring homomorphism, it is easy to see that

(2.4) Wn(V ξ + V η) = Wn(V (ξ + η)), ∀n ≥ 0.

If R has no p torsion, we deduce that V ξ + V η = V (ξ + η) from (2.4), since
W : W (R)→

∏∞
0 R is injective.

For a general R, take a surjective ring homomorphism π : S � R with S which
has no p torsion. Then W (π) : W (S)→ W (R) is a surjective ring homomorphism

and π commutes with V . Given ξ, η ∈ W (R), let ξ̃, η̃ ∈ W (S) be such that π(ξ̃) =

ξ, π(η̃) = η. By the above discussion, we know that V ξ̃ + V η̃ = V (ξ̃ + η̃). Applying
π to both sides and since π commutes with V we get V ξ + V η = V (ξ + η). �

Proposition 2.7. The construction R 7→W (R) has the following properties:
(a) if f : R→ S is a ring homomorphism, then the map

W (f) : W (R) −→W (S),

(x0, x1, . . . ) 7→ (f(x0), f(x1), . . . )

is also a ring homomorphism;
(b) for every n, the map

Wn : W (R) −→ R

(x0, x1, . . . ) 7→ xp
n

0 + pxp
n−1

1 + · · ·+ pn−1xpn−1 + pnxn

is a ring homomorphism.

Lemma 2.8. Define a map [·] : R→W (R) by [x] = (x, 0, 0, . . . ). Then
(1) [x][y] = [xy] for any x, y ∈ R.
(2) (x0, x1, . . . ) =

∑∞
n=0

V n[xn].

Proof. (1) If R has no 1, we can embed R into Z⊕R. Then we can assume R has 1.
Consider the ring homomorphism f : Z[X,Y ]→ R defined by X 7→ x, Y 7→ y. Ap-
plying the functor W , we get a ring homomorphism W (f) : W (Z[X,Y ])→W (R).
If we know that [X][Y ] = [XY ] in W (Z[X,Y ]), then applying the homomorphism
W (f) we get [x][y] = [xy].
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Consider the injective map W : W (Z[X,Y ]) →
∏∞

0 Z[X,Y ]. By definition,

Wn([X]) = Xpn . So Wn([X][Y ]) = Wn([XY ]). Now by the injectivity of W, we
deduce that [X][Y ] = [XY ]. We are done.

(2) Using the same method as in the proof of Lemma 2.6, we can assume R has
no p torsion. Then it suffice to show

(2.5) Wn((x0, x1, . . . )) = Wn

( ∞∑
i=0

V i[xi]

)
, ∀n ≥ 0.

Since Wn is a ring homomorphism, we have

Wn(

∞∑
i=0

V i[xi]) =
∑
i

Wn(V
i

[xi]).

We saw in the proof of Lemma 2.6 that Wn(V ξ) = 0 if n = 0; Wn(V ξ) = pWn−1(ξ)

if n > 0. So if n = 0, both sides of (2.5) are equal to x0. If n > 0, Wn(V
i

[xi]) =

piWn−i([xi]) = pixp
n−i

i if i ≤ n and Wn(V
i

[xi]) = 0 for i > n. Then it is easy to
check the equality of (2.5). �

Definition 2.9. For any ξ = (x0, x1, x2, . . . ) ∈W (R), by (2) of Lemma 2.8 we have
ξ = [x0]+Vη with η = (x1, x2, . . . ). Define the Frobenius map F : W (R)→W (R)
by

Fξ = [xp0] + pη.

Lemma 2.10. The Frobenius map is a ring homomorphism.

Proof. By definition of F , we have

Wn(Fξ) = Wn([xp0]) + pWn(η)

= xp
n+1

0 + p(xp
n

1 + pxp
n−1

2 + · · ·+ pnxn+1) = Wn+1(ξ).

So Wn(Fξ + Fξ′) = Wn(Fξ) + Wn(Fξ′) = Wn+1(ξ) + Wn+1(ξ′) = Wn+1(ξ + ξ′) =
Wn(F(ξ + ξ′)). Similarly, Wn(FξFξ′) = Wn(F(ξξ′)). As in the proofs of Lemmas 2.6
and 2.8, we can assume that R has no p torsion. Then the injectivity of W implies
that Fξ + Fξ′ = F(ξ + ξ′) and FξFξ′ = F(ξξ′). �

Lemma 2.11. We have
(a) F ◦ V = p;
(b) (Vξ) · η = V(ξ · Fη) for ξ, η ∈W (R).

Proof. (a) Since Wn(F◦Vξ) = Wn+1(Vξ) = pWn(ξ), we are done since we can
assume R has no p torsion.
(b) We have Wn((Vξ)·η) = Wn(Vξ)Wn(η) = pWn−1(ξ)Wn(η) for n ≥ 1 and 0 if n =
0. On the other hand, if n ≥ 1, Wn(V(ξ · Fη)) = pWn−1(ξ · Fη) = pWn−1(ξ)Wn(η).
If n = 0, Wn(V(ξ · Fη)) = 0. We are done. �

Lemma 2.12. Given x ∈ R, put ξ = p[x]− V[xp]. Then all components of ξ are in
p ·R, i.e., ξ ∈W (p ·R).

Proof. Without loss of generality, we can assume that R has 1 and has no p torsion.
It is easy to check that W0(ξ) = px, and for n ≥ 1 we have

Wn(ξ) = pxp
n

−Wn(V[xp]) = pxp
n

− pWn−1([xp]) = 0.
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Write ξ = (ξ0, . . . , ξn, . . . ). We will show that p|ξi by induction. We know px =
W0(ξ) = ξ0. So p|ξ0. Suppose for n ≥ 1, we have shown p|ξ0, . . . , ξn−1. Then

0 = Wn(ξ) = ξp
n

0 +pξp
n−1

1 + · · ·+pn−1ξpn−1 +pnξn. So by the induction assumption,

pn+1|pnξn. We are done. �

Proposition 2.13. Let R be a ring such that p ·R = 0. Then

F(x0, x1, . . . ) = (xp0, x
p
1, . . . ).

Proof. By Lemma 2.8 (2) we have

(x0, x1, . . . ) =

∞∑
n=0

V n[xn].

Hence

F(x0, x1, . . . ) = F[x0] +

∞∑
n=1

FV n[xn].

Note that for n ≥ 1 we have FV n = pV n−1 and V is an endomorphism of the
additive group of W (R), hence commutes with p. By definition F[x0] = [xp0], con-
sequently

F(x0, x1, . . . ) = [xp0] +

∞∑
n=1

V n−1

p[xn].

Since p ·R = 0, we have p[xn] = V[xpn] by Lemma 2.12. So we get

F(x0, x1, . . . ) = [xp0] +

∞∑
n=1

V n[xpn] = (xp0, x
p
1, . . . ).

The last equality follows from Lemma 2.8 (2). �

Example 2.13.1. In the ring W (Fp), the Frobenius is the identity map by Propo-
sition 2.13 since for x ∈ Fp we have xp = x.

Recall we have fixed a prime number p.

Definition 2.14. A ring R is called a perfect if p · R = 0 and the map R → R,
x 7→ xp, is a bijection.

Proposition 2.15. Let R be a perfect ring. Let A be a ring with an ideal a. Suppose
there is a positive integer c such that ac = 0 for every a ∈ a and pc = 0 in A. Then
for any ring homomorphism α : R → A/a, there is a unique ring homomorphism
β : W (R)→ A such that the following diagram is commutative

W (R)
β //______

W0

��

A

π

��
R

α // A/a

where π : A→ A/a is the canonical projection.

Proof. Consider Wn : W (A) → A, Wn(x0, . . . , xn, . . . ) = xp
n

0 + pxp
n−1

1 + · · · +
pnxn. By our assumption on the integer c, it is clear that for n large enough,
Wn(x0, · · · , xn, · · · ) = 0 if xi ∈ a. We fix one such n. Then the map

Wn : W (A)→ A
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factors though W (A/a), i.e., we have the following commutative diagram

W (A)
Wn //

W (π)

��

A

π

��
W (A/a)

W̃n

66nnnnnnn Wn // A/a

The lower triangular is commutative because Wn : W (A/a) → A/a is defined by
the same formula. Since p ·R = 0, the Frobenius map F : W (R)→W (R) is defined
by F(r0, r1, . . . ) = (rp0 , r

p
1 , . . . ) by Proposition 2.13. It is an isomorphism because R

is perfect. So we can consider F
−n
. We have the following commutative diagram

W (R)
F−n

// W (R)
W (α)//

Wn

��

W (A/a)
W̃n //

Wn

��

A

π
{{xxxxxxxxx

R
α // A/a

Define β = W̃n ◦W (α) ◦ F−n . Since Wn(Fξ) = Wn+1(ξ), we have Wn ◦ F
−n

= W0.

Hence π ◦ β = π ◦ W̃n ◦W (α) ◦ F−n = α ◦W0 by the above diagram.

Now we prove the uniqueness. For r ∈ R, consider β([r]). Let rn = r1/pn . Then

F−n([r]) = [rn]. We have W (α)([rn]) = [α(rn)]. Moreover W̃n([α(rn)]) = α̃(rn)
pn

,

where α̃(rn) ∈ A is any lift of α(rn). So

β([r]) = ˜α(r1/pn)
pn

.

Let β′ : W (R) → A is another homomorphism such that π ◦ β = α ◦W0. Then
β′([rn]) is a lift of α[rn]. So

β([r]) = β′([rn])p
n

= β′([rp
n

n ]) = β′([r]).

By Lemma 2.11 (a), we have F ◦V = p. In our case, we can show V ◦F = p on W (R)
too. In fact, by Proposition 2.13 and Lemma 2.6, for η = (r0, r1, . . . ) ∈ W (R) we
have

V F(r0, r1, . . . ) = (0, rp0 , r
p
1 , . . . ).

Then W0(V Fη) = 0 = pW0(η), W1(V Fη) = pap0 = 0 = pW1(η). Inductively,
Wn(V Fη) = 0 = pWn(η). Hence V F = p.

By Lemma 2.8, for any element ξ = (x0, x1, . . . ) ∈ W (R), ξ =
∑

V i[xi] =∑
V iF i[x

1/pi

i ]. By the above discussion, we have V F = FV = p. Hence ξ =∑
pi[x

1/pi

i ]. Since we know β and β′ agree on [r] for any r ∈ R, we have β(ξ) =
β′(ξ). �

Corollary 2.16. For any positive integer m, we have a homomorphism W (Fp)→
Z/pmZ such that

W (Fp) //______

W0

��

Z/pmZ

��
Fp id // Z/pZ
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is commutative. Hence we have a homomorphism

W(Fp)→ lim←−
m

Z/pmZ = Zp.

Remark 2.16.1. In fact, one can show that the map W(Fp) → Zp is an isomor-
phism.

Next, we consider the formal group associated to a Witt ring. Fix a ring R. We
have a functor

W : NilR → Ab

N 7→W (N).

This functor is clearly exact. But it is not a formal group, since W (N) is not always
equal to ∪W (Ni), for N = ∪Ni. The reason that this equality fails is that W (N)
has infinite length in general. Hence, for (n0, n1, . . . ), it is impossible to find one i
such that nk ∈ Ni for all k. For any N ∈ NilR, we define

Ŵ (N) = {ξ = (x0, x1, . . . )|xi = 0 for i large enough} .

For a general ring S, Ŵ (S) is not even a group. For example,

[x] + [y] = (. . . , Si(x, 0, . . . , y, 0, . . . ), . . . ).

Although [x], [y] have length 1, [x] + [y] may have infinite length. But we will show

that if N is nilpotent, Ŵ (N) is closed under addition, hence it is an abelian group.

In Wn(X0, . . . , Xn) = Xpn

0 + pXpn−1

1 + · · · + pnXn, if we define degXi = pi,
then degWn = pn. A homogeneous polynomial in this new definition is called a
quasi-homogeneous polynomial.

Lemma 2.17. The polynomial Sn defined by (2.2) is quasi-homogeneous of degree
pn in X0, . . . , Xn, Y0, . . . , Yn for each n.

Proof. By (2.2)

pnSn + · · ·+ Sp
n

0 = Wn(X0, . . . , Xn) + Wn(Y0, . . . , Yn).

The lemma follows by induction. �

Corollary 2.18. If N ∈ NilR, Ŵ (N) is closed addition. Hence Ŵ (N) is an
abelian group. The functor

Ŵ : NilR → Ab

is a formal group.

In the last lecture, we defined Ŵ : NilR → Ab and we showed that Ŵ (N) is an
abelian group for N ∈ NilR. Now we will show that it is a W (R)-module. Since we
have a homomorphism W (R) → W (R ⊕ N) and W (N) is an ideal of W (R ⊕ N),
there is a natural W (R)-module structure on W (N).

Lemma 2.19. The group Ŵ (N) is also a W (R)-module.

Proof. We only consider the caseN2 = 0. The general case follows using a filtration.
Then we claim that
(a) (n0, n1, . . . ) + (n′0, n

′
1 . . . ) = (n0 + n′0, n1 + n′1, . . . );

(b) F (n0, n1, . . . ) = (pn0, pn1, . . . );
(c) ξ ∈W (R) acts by ξ(n0, n1, . . . ) = (W0(ξ)n0,W1(ξ)n1, . . . ).
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From these formulae, we can see that Ŵ (N) is invariant under the action of W (R).
The claims (a)-(c) can be checked in a standard way, i.e., we can assume R is torsion
free and then prove these formulas by applying Wi. So in the case N2 = 0, if we
write N[Wi] for N regarded as a W (R)-module via Wi : W (R) → R, we have an
isomorphism

Ŵ (N) ∼=
⊕
i

N[Wi]

of W (R)-modules. �

Let R be a ring such that p is nilpotent in R.

Lemma 2.20. Let IR be the kernel of W0 : W (R)→ R. We note that IR = VW (R).
Let radW (R) denote the radical of W (R), i.e., the intersection of all maximal ideals
of W (R). Then

IR ⊂ radW (R).

Proof. For every x ∈ IR, we have to show that 1 − x is unit. Since IR = VW (R),
we can assume x = Vξ. Then it suffices to show that

1 + Vξ + (Vξ)2 + . . .

is convergent in W (R) = lim←−W (R)/V
n

W (R). It suffice to show that for any m,

there exists an n such that (Vξ)n ∈ VmW (R). By Lemma 2.11, we can check that

(Vξ)n = pn−1Vξn.

For example, VξVξ = V(ξFVξ) = V(pξ2). Hence it suffice to show that if n is big
enough, then pnW (R) ⊂ VmW (R). It is enough to check this for m = 1. But this
clear, since W (R)/VW (R) ∼= R is annihilated by some power of p by our assumption
on R. �

We are now ready to define the notion of a display.

Definition 2.21. Let P,Q be two W (R)-modules. A map f : P → Q is called
F -linear if f is additive and f(ξx) = Fξf(x) for all ξ ∈W (R) and x ∈ P .

Given an F -linear map f : P → Q, the map f ] : W (R)⊗W (R),F P → P defined

by f ](ξ ⊗ x) = ξf(x) is linear. The map f ] is called the linearization of f .

Definition 2.22. Let R be a commutative ring with 1 such that p is nilpotent
in R. A display over R is a quadruple P = (P,Q, F, Ḟ ), where P is a finitely

generated projective W (R)-module, Q ⊂ P is a submodule and F, Ḟ are F -linear

maps F : P → P , Ḟ : Q→ P , satisfying the following conditions.

(i) IRP ⊂ Q.
(ii) The quotient P/Q is a finitely generated projective R-module.

(iii) If ξ ∈W (R) and x ∈ P , we have the relation

Ḟ (Vξx) = ξF (x).

(iv) Ḟ (Q) generates P as a W (R)-module.

The number rkW (R)P is well-defined locally and is called the height of P. The R-
module P/Q is called the Lie algebra of P and rkR(P/Q) is called the dimension
of P.



36 Thomas Zink

Remarks:(1) That P/Q has an R = W (R)/IR-module structure follows from (i).

Since Ḟ is not linear, Ḟ (Q) is not a submodule of P in general.
(2) By (iii), we have

(2.6) F (x) = 1 · F (x) = Ḟ (V 1 · x) = FV1Ḟ (x) = pḞ (x)

for every x ∈ Q.

A morphism of two displays is defined to be a homomorphism of the corre-
sponding projective modules satisfying certain obvious compatible conditions. The
displays over R forms a category.

Proposition 2.23. Let S → R be a surjective ring homomorphism such that any
element in the kernel is nilpotent. Then any projective R-module P lifts to a pro-
jective S-module P̃ , i.e., there is a projective S-module P̃ and an isomorphism
φ : P̃ ⊗S R ' P . The pair (P̃ , φ) is uniquely determined up to isomorphism

Proof. To be added.
�

Lemma 2.24. For any display P = (P,Q, F, Ḟ ), we have a decomposition

P = T ⊕ L, Q = IRT ⊕ L,
where T and L are projective W (R)-modules. This decomposition is called a nor-
mal decomposition of P.

Here we only give a sketch of the proof. For details see [Z1] Lemma 2.

Proof. We first show each projective R-module M can be lifted to a W (R)-module.
Set An = W (R)/InR. Then W (R) = lim←−An, R = A1. The map An+1 → An is
surjective and any element in the kernel is nilpotent. So M can be lifted to an
An-module Mn step by step. Such {Mn} forms a projective system. Then take
P = lim←−Mn.

Since P/Q is a projective R-module, we have a split exact sequence

0→ Q/IRP → P/IRP → P/Q→ 0

of R-modules. Let L be a projective W (R)-module which lifts Q/IRP . By pro-
jectivity of L, L → Q/IRP factors through Q. Similarly we can lift P/Q to a
projective W (R)-module T . The map T → P/Q factors though P . Then we have
a homomorphism L ⊕ T → P . By construction, this homomorphism becomes an
isomorphism after tensoring with W (R)/IR. Since IR ⊂ radW (R), we can apply
Nakayama’s Lemma to conclude that the homomorphism L⊕ T → P is surjective.
Since P is projective, we deduce that the homomorphism L⊕ T → P is an isomor-
phism by comparing ranks.
We can show that Q = IRT ⊕ L similarly. �

Let P = (P,Q, F, Ḟ ) be a display. Suppose we are given a normal decomposition
P = T ⊕ L. Define a map

Φ = F ⊕ Ḟ : T ⊕ L→ P

(a, b) 7→ F (a) + Ḟ (b).

Then Φ is Frobenius linear.
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Lemma 2.25. The map

Φ] : W (R)⊗F,W (R) P → P

w ⊗ x 7→ wΦ(x)

is an isomorphism.

Proof. By definition, Φ] is linear. Since P is projective, it suffice to show that the
map is surjective. We use the axiom that Ḟ (Q) = Ḟ (IRT ⊕ L) generates P . So it

suffice to show Ḟ (Q) ⊂ ImΦ]. For V ξt ∈ IRT , we have Ḟ (V ξt) = ξF (t) ∈ Im(Φ)

by (iii) in the definition of a display. For l ∈ L, Ḟ (l) ∈ Im(Φ) by the definition of
Φ. We are done. �

Assume L, T are free R-modules. Suppose t1, . . . , td is a basis of T and l1, . . . , lc
is a basis of L. Her d indicates “dimension” and c indicates “codimension”. Then
we have

(2.7) F (tj) =
∑
i

αijti +
∑
i

βij li,

(2.8) Ḟ (lj) =
∑
i

γijti +
∑
i

δij li,

with αij , βij , γij , δij ∈W (R). By Lemma 2.25, we have

(2.9)

(
α γ
β δ

)
∈ GLc+d(W (R)).

Conversely, if we are given an invertible matrix as in (2.9), we can define a

display P = (P,Q, F, Ḟ ) with a given normal decomposition, as follows. Put T =
W (R)d, L = W (R)c, and P = T ⊕ L,Q = IRT ⊕ L. Define

Ḟ : IRT ⊕ L→ P

by

Ḟ



V ξ1
· · ·
V ξd
η1

· · ·
ηc

 =

(
α γ
β δ

)

ξ1
· · ·
ξd
F η1

· · ·
F ηc


and F : T → P by Formula (2.7). We extend F to P → P by Formula (2.6). So
we have a map F : P → P . Then it is easy to check that we have defined a display
P = (P,Q, F, Ḟ ).

We first look at an example of a display.

Definition 2.26. Let k be a perfect field of characteristic p. A Dieudonné mod-
ule over k is a triple P = (P, F, V ), where P is a finitely generated free W (k)-
module and F : P → P , V : P → P are additive maps such that

F (ξx) = FξF (x), V (ξx) = F−1

ξV (x) ∀ξ ∈W (k), x ∈ P,

and

FV = p = V F.
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Proposition 2.27. Let k be a perfect field with characteristic p. Let (P, F, V ) be a

Dieudonné module. Define Q = V P and Ḟ : Q→ P by V x 7→ x. Then (P,Q, F, Ḟ )
is a display. The assignment

(P, F, V ) 7→ (P,Q, F, Ḟ )

defines an equivalence between the category of Dieudonné modules over k and the
category of displays over k.

Proof. For a given Dieudonné module (P, F, V ), the construction obviously gives a

display (P,Q, F, Ḟ ). Conversely, suppose we are given a display (P,Q, F, Ḟ ). We
need to construct a map V : P → P . Since k is perfect, one can show that W (k) is
a complete discrete valuation ring with maximal ideal I = Ik = pW (k) = VW (k).
So in our case, each projective module is free. Let P = L ⊕ T , Q = IT ⊕ L be a
normal decomposition. We have an isomorphism

Ḟ ] : W (k)⊗F,W (k) Q→ P,

by the definition of a display. In our case, the Frobenius F : W (k)→ W (k) is also
an isomorphism by Proposition 2.13. Define

θ : W (k)⊗F,W (k) Q→ Q

by

ξ ⊗ x 7→ F−1

ξx.

Define a map

V : P →W (k)⊗F,W (k) Q→ Q→ P,

where the first arrow is the inverse of Ḟ ] and the second arrow is θ and the last
arrow is the inclusion. Then (P, F, V ) is a Dieudonné module.

It is not hard to see that the two constructions establish the required equivalence.
�

Next, we will construct a formal group for a display over any ring R such that p
is nilpotent in R.

We fix a display P = (P,Q, F, Ḟ ). We set

P̂ (N) = Ŵ (N)⊗W (R) P.

Regarded as a functor on NilR, P̂ is a formal group, since Ŵ is a formal group and
P is projective over W (R). Define a homomorphism

(2.10) P̂ (N) = Ŵ (N)⊗W (R) P → N ⊗R (P/Q)

by

ξ ⊗ p 7→W0(ξ)⊗ p̄.

Lemma 2.28. Let P = T ⊕ L,Q = IRT ⊕ L be a normal decomposition. Then
the kernel Q̂(N) of the map (2.10) is ÎR(N) ⊗W (R) T ⊕ Ŵ (N) ⊗W (R) L, where

ÎR(N) = VŴ (N). The functor Q̂ : NilR → Ab is a formal group.
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The lemma is trivial. By abuse of notation, we will use id : Q̂(N) → P̂ (N) to
denote the inclusion map later on.

We define a map

Ḟ : Q̂(N)→ P̂ (N)

as follows. Fix a normal decomposition P = T ⊕L,Q = IRT ⊕L. By Lemma 2.28,
Q̂(N) is generated by elements of the form Vη ⊗ t + ξ ⊗ l with η, ξ ∈ Ŵ (N), t ∈
T, l ∈ L. Then we define

Ḟ (Vη ⊗ t+ ξ ⊗ l) = η ⊗ F (t) + Fξ ⊗ Ḟ (l).

Note, by abuse of language, we have two maps called Ḟ . It can be shown that the
definition of Ḟ is independent of the choice of the decomposition.

Theorem 2.29. Let P = (P,Q, F, Ḟ ) be a display. Define a functor BTP : NilR →
Ab as follows. For any N ∈ NilR, we define

BTP(N) = Coker[Ḟ − id : Q̂(N) −→ P̂ (N)].

Then BTP is a formal group and we have an exact sequence

(2.11) 0 // Q̂(N)
Ḟ−id // P̂ (N) // BTP(N) // 0

for any N ∈ NilR. Moreover the tangent space of BTP is P/Q. The construction
P → BTP is functorial.

Note that BT stands for “Barsotti-Tate”.

Proof. For simplicity, put X = BTP .

We first consider the case N2 = 0. In this case, by the proof of Lemma 2.19, we
see that

Ŵ (N) =

∞⊕
n=0

N[Wn].

By the definitions of P̂ , Q̂, we have

(2.12)
P̂ (N) =

⊕∞
n=0N[Wn] ⊗W (R) P

Q̂(N) = (N[W0] ⊗W (R) L)⊕
⊕∞

n=1N[Wn] ⊗W (R) P

Note that N[W0] ⊗W (R) L is generated by [a]⊗ l for a ∈ N, l ∈ L. We have

Ḟ ([a]⊗ l) = F[a]⊗ Ḟ (l) = [ap]⊗ Ḟ (l) = 0

since N2 = 0.

As a W (R)-module N[Wn]
∼= V n[N ] = {(0, . . . , 0, a, 0, . . . )|a ∈ N}, where a is in

the nth place. Hence N[Wn] ⊗W (R) P is generated by the tensors V n[a] ⊗ x with
a ∈ N, x ∈ P . We have

Ḟ (V
n

[a]⊗ x) = V n−1

[a]⊗ F (x) ∈ N[Wn−1] ⊗W (R) P.

Therefore Ḟ acts on the right hand side of (2.12) by maps

F (n) : N[Wn] ⊗W (R) P → N[Wn−1] ⊗W (R) P

a⊗ x 7→ a⊗ Fx.
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Namely, for (0, u1, u2, . . . ) ∈
⊕

n≥1N[Wn] ⊗ P , we have

Ḟ ((0, u1, u2, . . . )) = (F (1)u1, F (2)u2, . . . ).

Now define an endomorphism F̃ : P̂ (N)→ P̂ (N) by

F̃ (u0, u1, . . . ) = (F (1)u1, F (2)u2, . . . ).

Then F̃ is an extension of Ḟ : Q̂(N) → P̂ (N). Since only finitely many of the

components ui are nonzero, we see that F̃ is a pointwise nilpotent endomorphism.
Therefore

F̃ − id : P̂ (N)→ P̂ (N)

is an isomorphism.

We obtain a commutative diagram

0 // Q̂(N)
id //

id

��

P̂ (N) //

F̃−id

��

N ⊗R (P/Q) // 0

Q̂(N)
Ḟ−id // P̂ (N) // X(N) // 0

In other words the tangent space of the functor X is P/Q.

Moreover it follows that Ḟ − id is injective for N ∈ NilR with N2 = 0. For an
arbitrary N ∈ NilR we find a finite chain

0 = Nt ⊂ · · · ⊂ N2 ⊂ N1 ⊂ N0 = N

such that N2
i ⊂ Ni+1. Using the exactness of the functors P̂ and Q̂ an induction

with the snake-lemma shows that Ḟ − id is injective in general, i.e. we proved that
the sequence (2.11) is exact. But this implies that the functor X is exact. The

second condition of a formal group is easy to verify, as we did for Ŵ (N). This
proves the Theorem. �

Remark 2.29.1. If P/Q is a free R-module rank d then X ∼= Âd by Theorem 1.14,
i.e., we may describe X by power series.

Lemma 2.30. Let P = (P,Q, F, Ḟ ) be a display. Then there is a unique W (R)-
module homomorphism

V ] : P →W (R)⊗F,W (R) P

such that

(2.13) V ](ξḞ (y)) = ξ ⊗ y, ∀ξ ∈W (R), y ∈ Q,

(2.14) V ](ξF (x)) = pξ ⊗ x, ∀ξ ∈W (R), x ∈ P.

Proof. The uniqueness follows from formula (2.13), since Ḟ (Q) generates P . To
prove the existence, we fix a normal decomposition P = T ⊕ L. Then we have an
isomorphism

Φ = F ] ⊕ Ḟ ] : W (R)⊗F,W (R) T ⊕W ⊗F,W (R) L→ P,

where F ] is the linearization of F . Consider the map

p⊕ id : W (R)⊗F,W (R) T ⊕W ⊗F,W (R) L→W ⊗F,W (R) P
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ξ ⊗ t+ η ⊗ l 7→ pξ ⊗ t+ η ⊗ l.
Define

V ] : P →W (R)⊗W (R),F P

to be the composition of p ⊕ id with Φ−1. We proceed to check that V ] satisfies
the required conditions. Clearly V ] is linear.

Take y ∈ Q to be of the form y = l + Vut with l ∈ L, u ∈W (R), t ∈ T . Then

V ](ξḞ (y)) = V ](ξḞ (l)) + V ](ξuF (t))
= ξ ⊗ l + pξu⊗ t = ξ ⊗ l + ξFV u⊗ t
= ξ ⊗ (l + Vut) = ξ ⊗ y.

This shows the identity (2.13).

To verify (2.14), take x = l + t with l ∈ L, t ∈ T . We have

V ](ξF (x)) = V ](ξF (l)) + V ](ξF (t))

= V ](Ḟ (Vξl)) + V ](ξF (t))
= 1⊗ Vξl + pξ ⊗ t = pξ ⊗ (l + t) = pξ ⊗ x.

We are done. �

Let us denote by FV ] the W (R)-linear map

idW (R)⊗F,W (R) V
] : W (R)⊗F,W (R) P →W (R)⊗F,W (R) W (R)⊗F,W (R) P.

Denote the right hand side space by W ⊗F 2,W (R) P . Inductively, we have

F iV ] = id⊗F i,W (R) V
] : W (R)⊗F i,W (R) P →W (R)⊗F i+1,W (R) P.

We denote by (V n)] the composite

Fn−1

V ] ◦ · · · ◦ FV ] ◦ V ].

Definition 2.31. A display P = (P,Q, F, Ḟ ) is called nilpotent if there is an
n ∈ N such that the map

(V n)] : P →W (R)⊗Fn,W (R) P

is zero modulo IR + pW (R).

Remark 2.31.1 The nilpotence condition for a display P = (P,Q, F, Ḟ ) is equiv-
alent to that the map

(2.15) R/pR⊗W0,W (R) (V n)] : (R/pR)⊗W0,W (R) P → (R/pR)⊗Wn,W (R) P

induced by (V n)] is zero.

If P,Q are free module, then the maps are given by invertible matrices. In
this case, we can express the nilpotence condition of a display by the matrices.
Explicitly, let P = (P,Q, F, Ḟ ) be a display which has a normal decomposition

with T = W (R)d, L = W (R)c, h = d + c. Suppose the map Φ = F ] ⊕ Ḟ ] is given
by a matrix (

A B
C D

)
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i.e.,

Φ

(
t
l

)
=

(
A B
C D

)(
Ft
Fl

)
for t ∈ T, l ∈ L. The matrix is invertible by Lemma 2.25. Consider the inverse
matrix (

Ă B̆

C̆ D̆

)
=

(
A B
C D

)−1

.

Hence V ] is defined by

V ]
(
t
l

)
=

(
pĂ pB̆

C̆ D̆

)(
Ft
Fl

)
.

Then V ](mod (IR + pW (R))) is defined by the matrix(
0 0

C̆1 D̆1

)
where D̆1 = D̆(mod (IR + pW (R))) is a matrix with entries in R/pR. Denote by

D̆
(pm)
1 the matrix each of whose entries is the pm-th power of the corresponding

entry of D̆1. Then “P is nilpotent” is equivalent to the statement that there is an
integer n > 0 such that

(2.16) D̆
(pn−1)
1 · D̆(pn−2)

1 · · · · D̆(p)
1 · D̆1 = 0.

The following is the main theorem of the theory of displays.

Theorem 2.32 (Zink). Let R be a commutative ring with 1 such that p is nilpo-
tent in R. Let P be a nilpotent display. Then BTP is a formal p-divisible group.
Moreover, the functor

BT : {nilpotent displays} −→ {formal p-divisible groups}
is an equivalence of the categories.

This is Theorem [9] in [Z1]. We will discuss the proof later but will not give a
detailed proof.

Definition 2.33. A frame consists of a surjective homomorphism of commutative
rings f : S → R whose kernel is denoted by I, an endomorphism σ : S → S and a
σ-linear map σ̇ : I → S such that
(i) σ(s) = sp(mod pS) for each s ∈ S.
(ii) σ̇(I) generates S as an ideal.
(iii) I ⊂ rad(S) and p ∈ rad(S).
(vi) Every finitely generated projective R-module lifts to a finitely generated projec-
tive S-module.
We will often denote the frame by (S, I,R, σ, σ̇) and omit the map f from the no-
tations for simplicity.

Example 2.33.1. Let R be a commutative ring such that p is nilpotent in R.
Put S = W (R) and I = IR = VW (R). Define σ : W (R) → W (R) to be the

Frobenius, i.e., σ(ξ) = Fξ, ξ ∈ W (R). Define σ̇ = V −1

: I → W (R) by σ̇(Vη) = η.

Then (S, IR, R,
F , V

−1

) is a frame. The condition (ii) in the definition of a frame
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has been used in the proof of Lemma 2.24. Note that in this example, we have
σ(Vη) = pσ̇(Vη) for any Vη ∈ I. For a general frame, we have the following lemma.

Lemma 2.34. Let F = (S, I,R, σ, σ̇) be a frame. Then there is a unique θ ∈ S
such that

σ(i) = θσ̇(i)

for all i ∈ I.

Proof. We first show the uniqueness. If θ′ is a second element in S satisfying the
condition, then (θ′ − θ)σ̇(i) for all i ∈ I. But σ̇(i) generates S, so we get θ′ = θ.

For the existence, we write 1 =
∑
k skσ̇(ik) with sk ∈ S, ik ∈ I. Then for any

i ∈ I, we have

σ(i) =
∑
k

σ(i)skσ̇(ik) =
∑
k

skσ̇(iik) =
∑
k

skσ(ik)σ̇(i),

by the fact that the map σ̇ is σ-linear. Then θ =
∑
k skσ(ik) satisfies the required

condition. �

Definition 2.35. Let F = (S, I,R, σ, σ̇) be a frame. A window over F is a

quadruple (P,Q, F, Ḟ ), where F is a finitely generated projective S-module, Q is a

submodule of P , F : P → P , Ḟ : Q → P are two σ-linear maps, satisfying the
following conditions.

(i) IP ⊂ Q.
(ii) The quotient P/Q is a finitely generated projective R-module.
(iii) If i ∈ I and x ∈ P , we have the relation

Ḟ (ix) = σ̇(i)F (x).

(iv) Ḟ (Q) generates P as an S-module.

(v) If y ∈ Q, then F (y) = θḞ (y), where θ is defined in Lemma 2.33.

Example 2.35.1. If we take F = (W (R), IR, R,
F , V

−1

) as in the Example 2.33.1,
then an F-window is equivalent to a display over R.
Remark 2.35.2. We can define nilpotent windows in the same manner as for
displays. We omit the explicit definition.

Definition 2.36. Let F = (S, I,R, σ, σ̇) and F ′ = (S′, I ′, R′, σ′, σ̇′) be two frames.
A morphism Θ : F → F ′ of frames consists of two homomorphism of rings
Θ1 : S → S′ and Θ2 : R → R′ such that Θ1 and Θ2 are compatible with all datum
in F and F ′. Explicitly, we require the diagram

S
Θ1 //

��

S′

��
R

Θ2 // R′

to be commutative. Hence Θ1,Θ2 induce a map I → I ′, which we denote by Θ1

again, by abuse of language. Furthermore, we require

Θ1 ◦ σ = σ′ ◦Θ1, Θ1 ◦ σ̇ = σ̇′ ◦Θ1.
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Remark 2.36.1 Since a display is a special window, we have the notion of mor-
phism between displays.

We consider base change functor of windows.

Definition 2.37. Suppose we are given a morphism Θ : F → F ′ of frames. Then
we define the base change functor

Θ• : {F-windows} −→ {F ′-windows}

by the assignment

(2.17) P = (P,Q, F, Ḟ ) 7→ P ′ = (P ′, Q′, F ′, Ḟ ′),

where P ′ = S′ ⊗S P , Q′ = Ker(S′ ⊗S P → R′ ⊗R (P/Q)), F ′ = σ′ ⊗ F : P ′ → P ′.

Note that Q′ is generated by I ′ ⊗S P and S′ ⊗S Q. We define Ḟ ′ : Q′ → P ′ by

Ḟ ′(i′ ⊗ x) = σ̇′(i)⊗ F (x), i′ ∈ I ′, x ∈ P,

Ḟ ′(s′ ⊗ y) = σ′(s′)⊗ Ḟ (y), s′ ∈ S′, y ∈ Q.

It is not hard to check that P ′ is an F ′-window. Moreover, we have P ′/Q′ =
R′ ⊗R (P/Q).
Remark 2.37.1. Since display is a special case of windows, we have the notion of
base change of displays.

As in Lemma 2.24, for any F-window P = (P,Q, F, Ḟ ), we can show that there
is a normal decomposition P = T ⊕L, Q = IT ⊕L. Then we have an isomorphism

Φ = F ] ⊕ Ḟ ] : S ⊗σ,S T ⊕ S ⊗σ,S L→ P.

Suppose that T and L are free. Then Φ is given by an invertible matrix

M =

(
A B
C D

)
∈ GLh(S), h = rkP.

In fact, it can be shown that P is uniquely determined by the matrix M . We
proved this for displays, and the proof is similar for windows. So we can identify
F-windows which have free P,Q with M ∈ GLh(S), where h = rkP .

Suppose F ′ is another frame and Θ : F → F ′ is a morphism of frames. Then it
is easy to see, under the above identification, that the base change functor can be
identified with the map

GLh(S)→ GLh(S′)

M 7→ Θ(M)

where Θ(M) is the matrix obtained by applying Θ1 to each entry of M .

Next, we will see how to construct morphisms of frames.

Lemma 2.38. Let F = (S, I,R, σ, σ̇) be a frame. Assume S has no p torsion.
Then there is a ring homomorphism δ : S → W (S) such that Wn(δ(s)) = σn(s),
for all n ≥ 0, s ∈ S. Furthermore, we have δ(σ(s)) = Fδ(s).
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Proof. For any s ∈ S, set un = σn(s). Note that as σ(s) ≡ sp(mod pS), we can
apply Proposition 2.2 to conclude there is a ξ ∈W (s) such that Wn(ξ) = un. Such
ξ is unique since S has no p torsion and the map W = (Wi; i ≥ 0) : W (S)→

∏
i≥0 S

is injective. Then we can define δ(s) = ξ. Since σ is a ring homomorphism, so is δ.

To prove the second assertion, we only need to check, for all n ≥ 0 and s ∈ S,
that

(2.18) Wn(δ(σ(s))) = Wn(F(δ(s))).

The left hand side of (2.18) equals σn(σ(s)) = σn+1(s). The right hand side of
(2.18) is Wn+1(δ(s)) = σn+1(s). We are done. �

Proposition 2.39. Assume that F = (S, I,R, σ, σ̇) is a frame such that θ = p.
Define X : S → W (R) to be the composition of δ : S → W (S) and the canonical
homomorphism W (S)→W (R), where δ is defined in Lemma 2.38. Then the map

X : (S, I,R, σ, σ̇)→ (W (R), IR, R,
F , V

−1

),

consisting of X : S → W (R) and id : R → R is a morphism of frames (see the
Definition 2.36) if and only if

(2.19) X(σ̇(i)) = V −1

X(i), ∀i ∈ I.

Proof. By the definition of δ, we have W0(δ(s)) = s. So we have the following
commutative diagrams

S
δ //

id

""DDDDDDDDD W (S) //

W0

��

W (R)

W0

��
S // R

S //

X

��

R

id

��
W (R)

W0 // R

In particular, X induces a map I → IR. Hence (2.19) makes sense. If X is a
morphism of frames, then we have (2.19) by Definition 2.36. Conversely, suppose
(2.19) holds. Multiplying on both sides of (2.19) by p, the left hand side becomes

pX(σ̇(i)) = X(pσ̇(i)) = X(σ(i)).

The right hand side becomes

pV
−1

X(i) = FV V −1

X(i) = FX(i).

We get X(σ(i)) = FX(i). This shows that X is a morphism of frames. �

Corollary 2.40. Suppose that θ = p in F , and W (R) has no p torsion. Then
(2.19) holds. Consequently, we have a morphism of frames

X : (S, I,R, σ, σ̇)→ (W (R), IR, R,
F , V

−1

).

Proof. Composing the canonical map W (S) → W (R) with δ of Lemma 2.38 and
using that Lemma, we get

X(σ(i)) = FX(i).

This is equivalent to

pX(σ̇(i)) = p(V
−1

X(i)),

see the proof of Proposition 2.39. Since we assume W (R) has no p torsion, we get
(2.19). �
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Example 2.40.1 If p ·R = 0 and R is reduced, then

p(r0, r1, . . . ) = (0, rp0 , r
p
1 , . . . )

in W (R). So W (R) has no p torsion.

Suppose X : F → (S, I,R, F , V
−1

) defined in Proposition 2.39 is a morphism of
frames. Then we can consider the composite functors

(2.20) {F-windows} → {displays over R} → {formal groups}

where the first functor is the base change functor defined by X and the second
functor is BT.

Example 2.40.2 Let k be a perfect field of characteristic p. Put R = k[T1, . . . , Tn].
Then R is reduced. We set S = W (k)[X1, . . . , Xn]∧, the p-adic completion of
W (k)[X1, . . . , Xn]. Consider the map f : S → R, f(Xi) = Ti. Let I be the ideal
pS. Define σ : S → S by σ|W (k) = F and σ(Xi) = Xp

i . Define σ̇ : I = pS → S
by σ̇(ps) = σ(s). We get a frame F = (S, pS,R, σ, σ̇). It is clear that θ = p. Since
W (R) has no p torsion, we get a morphism of frames

X : F → (W (R), IR, R,
F , V

−1

)

by Corollary 2.40. We have

X : S →W (R)

Xi 7→ [Ti] = (Ti, 0, 0, . . . ).

Let S,R be two rings with 1. Suppose p is nilpotent in S. Let S � R be a
surjective homomorphism of commutative rings with kernel a. Suppose there are
pd structures γn on a. Let aN be the additive group

∏
i∈N a. We define a W (S)-

module structure on aN by

ξ[a0, a1, . . . ] = [W0(ξ)a0,W1(ξ)a1, . . . ], ξ ∈W (S), a = [a0, a1, . . . ] ∈ aN.

We set αpn(a) = (pn − 1)!γpn(a) and

(2.21) W′n(X0, . . . , Xn) = αpn(X0) + αpn−1(X1) + · · ·+Xn.

Then W′n(a) is well-defined for a ∈ aN and pnW′n(a) = Wn(a).

Lemma 2.41. The polynomials W′n define an isomorphism

log : W (a)→ aN

η 7→W′n(η)

of W (S)-algebras.

We omit the proof.
We denote ã = log−1[a, 0, 0, . . . ]. Then ã is an ideal of W (S).
It is not difficult to compute the corresponding multiplication, Frobenius homo-
morphism, and Verschiebung homomorphism on aN under the isomorphism log by
the universal property of W′i:

(2.22)
[a0, a1, . . . ][b0, b1, . . . ] = [a0b0, pa1b1, . . . , p

iaibi, . . . ]
F[a0, a1, . . . , ai, . . . ] = [pa1, pa2, . . . , pai, . . . ]
V[a0, a1, . . . , ai, . . . ] = [0, a0, a1, . . . , ai, . . . ]
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Lemma 2.42. Let ρ : W (S)→ R be the composition of the natural maps W (S)→
W (R) and W0 : W (R) → R. Then ρ is surjective, and Ker(ρ) = ã ⊕ IS. If we
define

V −1 : ã⊕ IS →W (S)

by V −1|ã = 0 and V −1(Vη) = η for Vη ∈ IS, then

(W (S), ã⊕ I(S), R, F , V −1),

where F is the Frobenius on W (S), is a frame. Denote this frame by WS/R.

Proof. It is easy to see that ρ is surjective and Kerρ = W (a) + IS . Note that
W (a) = ã + VW (a) by (2.22) and VW (a) ⊂ IS = VW (S). Then it is clear that
Kerρ = ã⊕ IS .

To show that WS/R is a frame, we need to show that Kerρ ⊂ radW (S), p ∈
radW (S) and the lifting property (ii) of Definition 2.33.

To show that p ∈ radW (S), we need to show that for any y ∈W (S), 1− py is a
unit in W (S). Since p is nilpotent in S, 1 + (py) + · · ·+ (py)m + · · · is well-defined
in W (S) = lim←−W (S)/V

n

W (S), it is clear that 1− py is a unit.

Next we show that: Kerρ ∈ radW (S). For any x in Kerρ, y ∈ W (S), we have
to show that 1 − xy is a unit in W (S). Since Kerρ is an ideal, xy ∈ Kerρ. So we
only have to show that 1 − x is a unit for all x ∈ Kerρ. So we have to show that
1 + x2 + · · · + xm + · · · is convergent in W (S) = lim←−W (S)/V

n

W (S). It suffice to

show that for any n, there is an m such that xm ∈ V nW (S). It suffice to show
that for m large enough xm ∈ VW (S). Suppose x = (x0, x1, . . . , xi, . . . ) ∈ W (S).
Since x = [x0] + Vx and Vx ∈ VW (S), it suffice to show that [x0]m ∈ VW (S) for
m large. But x ∈ Kerρ implies x0 ∈ a. We can view [x0] as an element of aN,
i.e., [x0] = [x0, 0, . . . , 0, . . . ]. By (2.22), [x0, 0, . . . , 0, . . . ]

m = [xm0 , 0, . . . ]. Since a
has divided power and p is nilpotent in S, then for n large enough we have that

xp
n

0 = (pn)!γpn(x0) is zero. It suffice to take m = pn.

The lifting property can be proved in a similar way as in the proof of Lemma
2.24. �

It is obvious that we have a morphism of frames

Θ :WS/R = (W (S), ã⊕ I(S), R, F , V −1)→WR = (W (R), IR, R,
F , V

−1

).

Theorem 2.43. The base change functor defined by Θ induce an equivalence of
categories {

nilpotent WS/R-windows
}
→ {nilpotent displays over R} .

We devote the following section and the next section to the proof of this theorem.
Consider the ideal pia. Then pia has pd structure defined by

γ(i)
n (pia) = (pi)nγn(a), a ∈ a.

We have the exact sequence

0→ pi−1a/pia→ S/pia→ S/pi−1a→ 0.
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We will show that

W(S/pia)/R →W(S/pi−1a)/R

induces an equivalence of categories of the corresponding nilpotent windows. Note
that, we assume that p is nilpotent in S. Hence for some i, pi = 0 in S, i.e.,
S/pia = S. Then the theorem will follow.

Observe that the Frobebius on W (pi−1a/pia) is zero by (2.22) and the fact that
pa = 0 for any a ∈ pi−1a/pia. Hence the theorem is a consequence of the following
proposition.

Proposition 2.44. Let

Θ : F = (S, I,R, σ, σ̇)→ F̄ = (S̄, Ī, R̄, σ̄, ¯̇σ)

be a morphism of frames with R̄ = R. Assume that p is nilpotent in S, I has pd
structure and the map S → S̄ is surjective with kernel c. By the snake lemma,
we can see that a = Ker(I → Ī). So σ̇ is defined on c. We assume σ̇(c) ⊂ c
and σ(c) = 0. Then the base change functor defined by Θ : F → F̄ induces an
equivalence of categories

{nilpotent F-windows} →
{

nilpotent F̄-windows
}
.

Proof of Proposition 2.44. For simplicity, we assume that the windows that we con-
sidered have free normal decompositions. There is no essential difficulty to gener-
alize the following proof to the general case.

Recall that a functor is an equivalence if and only if it is fully faithful and es-
sentially surjective. We first show that the base change functor in our case is fully
faithful.

We begin with some general remarks. Let P1 = (P1, Q1, F1, Ḟ1) be an F-window.
Take a normal decomposition

P1 = T1 ⊕ L1, Q1 = IT1 ⊕ L1.

We assume that T1, L1 are free S-modules, say T1 ' Sd, L1 ' Sc. Consider the
map

Φ = F1 ⊕ Ḟ1 : T1 ⊕ L1 → P1.

Then Φ is defined by an invertible matrix(
A1 B1

C1 D1

)
,

i.e.,

Φ

(
t
l

)
=

(
A1 B1

C1 D1

)(
σ(t)
σ(l)

)
.

The map Φ is uniquely determined by Ḟ1

Ḟ1

(
t
l

)
=

(
A1 B1

C1 D1

)(
σ̇(t)
σ(l)

)
.

Let P2 = (P2, Q2, F2, Ḟ2) be another window. Take a normal decomposition
P2 = T2 ⊕ L2, Q2 = IT2 ⊕ L2 with free T2, L2. We consider Hom(P1,P2). A map
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α : P1 → P2 is given by a matrix

(2.23)

(
X J
Z Y

)
with X ∈ Hom(T1, T2), Y ∈ Hom(L1, L2), Z ∈ Hom(T1, L2), J ∈ Hom(L1, IT2).
X,Y, Z have coefficients in S and J has coefficients in I. Then α is a homomorphism
if and only if the diagram

IT1 ⊕ L1
α //

Ḟ1

��

IT2 ⊕ L2

Ḟ2

��
IT1 ⊕ L1

α // IT2 ⊕ L2

is commutative (Recall: Ḟ determines F ). The diagram is commutative if and only
if

(2.24)

(
A2 B2

C2 D2

)(
σ(X) σ̇(J)
θσ(Z) σ(Y )

)
=

(
X J
Z Y

)(
A1 B1

C1 D1

)
,

where θ is defined in Lemma 2.34.

Claim: Let P1,P2 be two nilpotent windows which have the same base change P̄.
Then there is a unique isomorphism P1 → P2 which lifts idP̄ .

Proof of the claim: Suppose P̄ = (P̄ , Q̄, F̄ , ¯̇F ). Assume P̄ = T̄ ⊕ L̄ is a normal

decomposition. Assume T̄ = S̄d, L̄ = S̄c and that Φ̄ = F̄ ⊕ ¯̇F : T̄ ⊕ L̄ → P̄ is
defined by (

A B
C D

)
.

Let Pi = Ti ⊕ Li, i = 1, 2, be normal decompositions of Pi. Without loss of
generality, we can assume Ti ⊗S S̄ = T̄ , Li ⊗S S̄ = L̄. We have T1 ' T2 = T, L1 '
L2 = L. Suppose Φi is given be a matrix(

Ai Bi
Ci Di

)
.

Suppose α : P1 → P2 is a morphism given by a matrix as in (2.23), which lifts the
identity idP̄ . By (2.24), we have

(2.25)

(
A2 B2

C2 D2

)(
σ(X) σ̇(J)
θσ(Z) σ(Y )

)
=

(
X J
Z Y

)(
A1 B1

C1 D1

)
.

Since α lifts the identity, we have that

(2.26)

(
Ed 0
0 Ec

)
−
(
X J
Z Y

)
has coefficients in c.

Consider the left side of (2.25).
(2.27)(

A2 B2

C2 D2

)(
σ(X) σ̇(J)
θσ(Z) σ(Y )

)
=

(
A2σ(X) + θB2σ(Z) A2σ̇(J) +B2σ(Y )
C2σ(X) + θD2σ(Z) C2σ̇(J) +D2σ(Y )

)
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By (2.26) and the assumption σ(c) = 0, we have σ(X) = 1, σ(Y ) = 1, σ(Z) = 0,
thus (2.27) becomes

(2.28)

(
A2 B2

C2 D2

)
+

(
0 A2σ̇(J)
0 C2σ̇(J)

)
Then (2.25) becomes

(2.29)

(
A2 B2

C2 D2

)
+

(
0 A2σ̇(J)
0 C2σ̇(J)

)
=

(
X J
Z Y

)(
A1 B1

C1 D1

)
Multiplying (2.29) by (

Ă1 B̆1

C̆1 D̆1

)
=

(
A1 B1

C1 D1

)−1

on the right we get

(2.30)

(
ξA ξB
ξC ξD

)
+

(
0 A2σ̇(J)
0 C2σ̇(J)

)(
Ă1 B̆1

C̆1 D̆1

)
=

(
X J
Z Y

)
.

We see that X,Y, Z are uniquely determined by J , and J satisfies

(2.31) ξB +A2σ̇(J)D̆1 = J.

Hence to prove the uniqueness and existence of α, it suffice to show that there is a
unique J satisfying (2.31). We define

U(J) = A2σ̇(J)D̆1.

It is enough to show that U is pointwise nilpotent. In fact, once we have that U is
pointwise nilpotent, then

(id− U)−1 = id + U + U2 + · · ·
exists and J = (id− U)−1ξB is the unique solution of (2.31).

The nilpotence of U follows from the nilpotence of our windows. In fact,

U2(J) = A2σ̇(A2σ̇(J)D̆1)D̆1 = A2σ(A2)σ̇2(J)σ(D̆1)D̆1.

Inductively, we have

Un(J) = A2σ(A2) · · ·σn−1(A2)σ̇n(J)σn−1(D̆1) · · ·σ(D̆1)D̆1.

Let N = σ̇n−1(J), and M = σn−2(D̆1) · · · D̆1. By (2.16), there is an integer c > 0
such that

σc−1(D̆1) · · ·σ(D̆1)D̆1 ∈ I.
So if we take n ≥ c+ 1, M has coefficients in I. Since σ̇(c) ⊂ c, we see that N has
coefficients in c. Then

σ̇(N)σ(M) = σ̇(NM) = σ(N)σ̇(M) = 0

since σ(c) = 0. Hence U is nilpotent. Now the claim follows.

The above proof is also valid when our windows do not have free normal decom-
positions.

Next we show the base change functor is fully faithful, i.e., for any nilpotent
F-window P1,P2, with base change P̄1, P̄2, then

HomF (P1,P2) −→ HomF̄ (P̄1, P̄2)
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is a bijection.

From the above claim, the map is bijective when P̄1 ' P̄2. In the general case,
let ᾱ : P̄1 → P̄2 be a morphism. Consider the isomorphism(

idP̄1
0

ᾱ idP̄2

)
: P̄1 ⊕ P̄2 → P̄1 ⊕ P̄2.

It lifts uniquely to an isomorphism(
idP1 0
α idP2

)
: P1 ⊕ P2 → P1 ⊕ P2.

Then α is the unique lift of ᾱ. This shows that the base change functor is fully
faithful.

The base change functor is essentially surjective since any window P̄ lifts by lift-
ing the matrix. If we do not assume our windows have free normal decompositions,
we have to apply Proposition 2.23. Now the proof of Proposition 2.44, hence the
proof of Theorem 2.43 is complete. �

Definition 2.45. Let R be a commutative ring with 1 such that p is nilpotent in
R. We denote by Rcrys the category defined as follows. An object of Rcrys is a
pair (f : S � R, δS), where f : S � R is a surjective homomorphism and δS
is a divided power structure on Kerf . A morphism between (f : S � R, δS) and
(f ′ : S′ � R, δS′) in Rcrys is a ring homomorphism α : S → S′ such that f ′α = f
and α respects the divided power structures.

Definition 2.46. Let R be as above. A crystalM over R consists of the following
data:
(i) for each (f : S � R, δS) ∈ Rcrys, there is a finitely generated S-module MS ;
(ii) for each morphism α : (f : S � R, δS)→ (f ′ : S′ � R, δS′) ∈ Rcrys, there is an
isomorphism

φS′,S : S′ ⊗S MS 'MS′ ;

such that for any two morphisms α : (f : S � R, δS) → (f ′ : S′ � R, δS′), and
β : (f ′′ : S′ � R, δS′)→ (f ′ : S′′ � R, δS′′), the following diagram

S′′ ⊗S′ S′ ⊗S MS

idS′′⊗φS′,S //

'
��

S′′ ⊗S MS′

φS′′,S′

��
S′′ ⊗S MS

φS′′,S // MS′′

is commutative.

Remark 2.46.1. In fact, the category Rcrys can be used to define a site CrysX,
where X = SpecR. See [M] page 106-111. We have the structure sheaf Ocrys

X on
this site defined by Ocrys

X (S) = S for any (f : S � R, δS) ∈ Rcrys. Then we can
define a crystal as a coherent sheaf M of Ocrys

SpecR-modules satisfying an additional

condition: for (α : S → S′) ∈ Rcrys, the restriction map M(S) → M(S′) induces
an isomorphism

S′ ⊗SM(S) 'M(S′).

It is easy to globalize the above notions.
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For any (f : S � R, δS) ∈ Rcrys, we have proved that the base change functor
induced by WS/R →WR (Theorem 2.43) defines an equivalence

f• :
{

nilpotent windows of WS/R

}
→ {nilpotent displays over R} .

For each nilpotent display P over R, let PS = (PS , QS , F, Ḟ ) be the corresponding
nilpotent WS/R-window under the above equivalence. Let DP(S) = PS/ISPS .
Then DP(S) is a finitely generated projective S-module. Let α : (f : S � R, δS)→
(f ′ : S′ � R, δS′) be a morphism in Rcrys. Since f ′ = αf , we have f ′• = α•f•.
Recall, f• is the base change functor induced by f , see Definition 2.37. Hence if we
let PS′ = α•(PS) be the nilpotent display obtained by the base change induced by
α, then f ′•(PS′) = P. So there is a canonical isomorphism φS′,S : S′ ⊗S DP(S) '
DP(S′).

Proposition 2.47. For a given nilpotent display P over R, the assignment

(f : S � R, δS) 7→ DP(S)

[α : (f : S � R, δS)→ (f ′ : S′ � R, δS′)] 7→ φS′,S

defines a crystal over R.

The proposition is clear.

Recall the notion of connections.

Definition 2.48. Let S be a scheme and X a finite type scheme over S. Let E be
a coherent sheaf over X. A connection on E is an OS-linear map

∇ : E → E ⊗ Ω1
X/S

satisfying

∇(fs) = s⊗ df + f∇m,
where Ω1

X/S is the Kähler differential and d : OX → ΩX/S is the natural map, f is

a section of OX and s is a section of E.

Similarly, we can define a connection for a crystalline site. It just replaces X in
the above definition by CrysX.

To a crystal M on X = SpecR, we will associate a connection. Let I be the
kernel of the multiplication map R ⊗ R → R. Then Ω1

R := Ω1
R/Z ' I/I2, see [H],

II.8. The map d : R→ Ω1
R is dr = 1⊗ r − r ⊗ 1(mod I2). Let

U = (R⊗R)/I2.

Then the kernel of the multiplication map U → R is I/I2. There is a natural pd
structure δU on I/I2 defined by

γ1(x) = x, γi(x) = 0, i > 1.

Then (U → R, δU ) ∈ Rcrys. We can view id : R→ R with the trivial pd structures
as an element of Rcrys. There are two morphisms in Rcrys: u1 : R→ U defined by
u1(r) = 1 ⊗ r(mod I2), u2 : R → U defined by u2(r) = r ⊗ 1(mod I2). Note that
dr = u1(r)− u2(r). There is an isomorphism

(2.32) U ' R⊕ Ω1
R.
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Under this isomorphism, u1 is identified with κ : R → R ⊕ Ω1
R, κ(r) = (r, 0); u2 is

identified with κ⊕ (−d) : R→ R⊕Ω1
R, r 7→ (r,−dr). By the definition of a crystal,

we have isomorphisms

U ⊗u1,RMR 'MU ' U ⊗u2,RMR.

Under the identifications using the isomorphism (2.32), we have the following dia-
gram

MR ⊗R,κ (R⊕ Ω1
R)

φ

'
//

ρ1
''OOOOOOOOOOOO

MR ⊗R,κ⊕(−d) (R⊕ Ω1
R)

ρ2
vvmmmmmmmmmmmmmm

MR

where ρ1, ρ2 are induced by U → R.

Proposition 2.49. For any m ∈MR, define

∇(m) = φ(m⊗ (1, 0))−m⊗ (1, 0).

Then ∇(m) ∈MR ⊗ Ω1
R and

∇(fm) = m⊗ df + f∇(m)

for f ∈ R,m ∈MR.

Proof. Note that ρi(m ⊗ (1, 0)) = m for i = 1, 2 and ρ2φ = ρ1. Hence we have
∇(m) ∈ Ker(ρ2) = MR ⊗ Ω1

R. Since φ is a U -module homomorphism, we have

φ(fm⊗ (1, 0)) = φ(m⊗ (f, 0)) = (m⊗ (1, 0) +∇m)(f, 0)

= m⊗ (f, 0) + f∇m = m⊗ (f,−df) +m⊗ (0, df) + f∇m
= fm⊗ (1, 0) +m⊗ df + f∇m.

We get
∇(fm) = m⊗ df + f∇(m).

�

By base change, we can get a homomorphism

∇ :M→M⊗ Ω1
SpecR,

which is a connection by Proposition 2.48.

In [M], Messing associate to any formal p-divisible group X a crystal DX , called
the Grothendieck-Messing crystal.

Theorem 2.50. Let P be a nilpotent display over R. Let X = BTP . Then there
is a canonical isomorphism

DP(S) ' DX(S)

for any (f : S � R, δS) ∈ Rcrys.

Definition 2.51. Given are (S � R, δS) ∈ Rcrys, and a nilpotent display P over R.

Then a deformation of P to S is pair (P̃, ι), where P̃ is a display over S and ι is an

isomorphism P̃R → P. Here P̃R is the base change of P̃ to R. A homomorphism
f : (P̃, ι) → (P̃ ′, ι′) of deformations is a homomorphism f : P̃ → P̃ ′ of displays
such that ι′ ◦ fR = ι. We denote by

DefP(S)
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the set of isomorphism classes of deformations of P to S.

Definition 2.52. Let P = (P,Q, F, Ḟ ) be a display over R. Recall we have defined
DP(R) = P/IRP in Proposition 2.47. We call the quotient map

DP(R) = P/IRP � P/Q

the Hodge filtration of P.

Given are (f : S � R, δS) ∈ Rcrys and a nilpotent display P over R. We have
defined DP(S) in Proposition 2.47. By a lifting of the Hodge filtration of P, we
mean a map ρ : DP(S) � U , where U is a finitely generated projective S-module,
and a commutative diagram

DP(S) //

ρ

��

DP(R)

��
U // P/Q

such that U ⊗S R ' P/Q.

Theorem 2.53. Let P̃ = (P̃ , Q̃, F, Ḟ ) be a deformation of P to S. Then the

Hodge filtration P̃ /ISP̃ � P̃ /Q̃ of P̃ is a lifting of the Hodge filtration of P. This
assignment gives a bijection between the set DefP(S) and the set of isomorphism
classes of liftings of the Hodge filtration of P.

Proof. We first show that P̃ /ISP̃ → P̃ /Q̃ is a lifting of the Hodge filtration of P. By

definition, P̃ /Q̃ is finitely generated, projective, and we have S ⊗R (P̃ /Q̃) ' P/Q.

So it suffices to show that DP(S) ' P̃ /ISP̃ . By the definition of DP(S), we only

have to show that there is a nilpotent WS/R-window (P1, Q1, F, Ḟ ) with P1 = P̃ .

Consider the map π : P̃ → P̃ ⊗S R ' P and ψ : Q̃ → Q̃ ⊗S R ' Q. Let
P̃ = T̃ ⊕ L̃, Q̃ = IS T̃ ⊕ L̃ be a normal decomposition of P̃. Let T = W (R)⊗W (S)

T̃ , L = W (R) ⊗W (S) L̃. Then we can identify P with T ⊕ L and identify Q with
IRT ⊕ L. Then π and ψ are surjective. Put a = Ker(S → R). We know that

W (a) = Ker(W (S) �W (R)), hence W (a)P̃ = Ker(P̃ � P ). Then it is clear that

π−1(Q) = Q̃+W (a)P̃ = ãP̃ .

Here ã is defined after Lemma 2.41. Note that there is a map Ḟ on Q̃. We extend
Ḟ to π−1(Q) by Ḟ |ãP̃ = 0. Note that Q̃ ∩ ãP̃ = ãL̃ and Ḟ (al) = FaḞ (l̃) = 0, for

a ∈ ã, l ∈ L̃, since Fa = 0 for all a ∈ ã by Equation (2.22). Hence the extended

Ḟ is well-defined. It is easy to see that (P̃ , π−1, F, Ḟ ) is a nilpotent WS/R-window

which lifts P under the base change functor. Hence DP(S) = P̃ /ISP̃ .

Conversely, let ρ : DP(S) � U be a lifting of the Hodge filtration of P. We will

construct a deformation of P to S. Let (P̃ , Q̃, F, Ḟ ) be a nilpotent WS/R-window

which lifts P (see Theorem 2.42). Then DP(S) = P̃ /ISP̃ . Put

U ′ = Ker(P̃ → P̃ /ISP̃ = DP(S)→ U).

Then it can be checked that (P̃ , U ′, F, Ḟ ) is a display over S. It is easy to see
that the above two constructions are inverse to each other, hence give the desired
bijection. �
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Theorem 2.54 (Grothendieck-Messing). Let X be a formal p-divisible group over
R and DX the Grothendieck-Messing crystal of X. Then we have a surjection

DX(R) � Lie(X),

which is called the Hodge filtration of DX . The isomorphism classes of defor-
mations of X to S are bijective to the isomorphism classes of liftings of the Hodge
filtration of DX .

For the proof, see [M].
Remark 2.54.1 By theorems 2.49, 2.52, 2.53, to prove the Main Theorem 2.32 for
S with S → R ∈ Rcrys, it suffice to prove the main theorem for R. We will not do
this. See [Z1].
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3. Classification of Formal p-Divisible Groups up to Isogeny

As before, we fix a prime number p. Let R be a commutative ring with 1.

Definition 3.1. Let X,Y be two formal groups over R of the same dimension.
Assume

X = SpfR[[T1, . . . , Td]], Y = SpfR[[S1, . . . , Sd]].

A homomorphism f : X → Y is called an isogeny if for

f∗ : R[[S1, . . . , Sd]]→ R[[T1, . . . , Td]]

there is an integer n ∈ N such that

Tni ⊂ Imf∗.

Remark 3.1.1. By Weierstrass Preparation Theorem (Theorem 1.51), an isogeny
is faithfully flat and finite.

Example 3.1.2. Assume that p ·R = 0 and that X is a formal group over R given
by

X = SpfR[[T1, . . . , Td]].

We define a new formal group X(p) by

X(p) : NilR −→ Ab

X(p)(N) = X(N[Frob]),

where Frob : R → R is the Frobenius x 7→ xp, and N[Frob] is the R-algebra on
N defined by r ◦ n = rp · n, for r ∈ R,n ∈ N . The map φ : N → N[Frob],
φ(n) = np is an algebra homomorphism. Hence we can apply the functor X to
obtain a homomorphism

X(φ) : X(N)→ X(N[Frob]) = X(p)(N)

of formal groups.
Claim 3.1.3. X(φ) is an isogeny. It is called the Frobenius homomorphism of X
and will be denoted by FX .

In fact, as a set X(N) = X(N[Frob]) = Nd, and FX is given by (n1, . . . , nd) 7→
(np1, . . . , n

p
d). Hence

F ∗X : R[[T1, . . . , Td]] −→ R[[T1, . . . , Td]]

is given by

Ti 7→ T pi .

So it suffices to show that FX preserves the group structures. Suppose the group
structure of X is given by the group law F1(T , T ′), . . . , Fd(T , T

′). Then the group

law of X(p) is given by F
(p)
1 (T , T ′), . . . , F

(p)
d (T , T ′), where F

(p)
i (T , T ′) is obtained

by applying the Frobenius to the coefficients of Fi(T , T
′). Then

n+X n′ = (Fi(n, n
′)),

Hence

FX(n+X n′) = (Fi(n, n
′)p),

while

FX(n) +X(p) FX(n′) = (F
(p)
i (FX(n), FX(n′))).
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It is easy to see that

FX(n+X n′) = FX(n) +X(p) FX(n′).

We are done.

Lemma 3.2. Assume p · R = 0. Let P = (P,Q, F, Ḟ ) be a display over R. Put
X = BTP . Let P(p) be the base change of P under Frob : R→ R.
(i) If we write P(p) = (P (p), Q(p), F (p), Ḟ (p)), then

P (p) = W (R)⊗F,W (R) P
Q(p) = IR ⊗F,W (R) P + Image(W(R)⊗F,W(R) Q)

The operators F (p) and Ḟ (p) are uniquely determined by the relations:

F (p)(w ⊗ x) = Fw ⊗ F (x), w ∈W (R), x ∈ P
Ḟ (p)(Vw ⊗ x) = w ⊗ F (x),

Ḟ (p)(w ⊗ y) = Fw ⊗ Ḟ (y), y ∈ Q.

(ii) The map

V ] : P −→W (R)⊗F,W (R) P

defined in Lemma 2.30 induces a morphism FrP : P → P(p), which is called the
Frobenius homomorphism of P.
(iii) We have an isomorphism X(p) ' BTP(p) and FX can be identified with BT(FrP)
under this isomorphism.

The first two parts of the lemma is Example 23 in [Z1]. The third part of the
lemma is Proposition 87 of [Z1]. The following proof is a copy of them.

Proof. (i) By Proposition 2.13, we have W (Frob) = F . So P (p) = W (R)⊗F,W (R)P .
Now Part (i) follows from the definition (2.37) directly.
(ii) By definition of V ], it is easy to see that V ](Q) ⊂ Q(p). Using the fact that P is

generated as a W (R)-module by the elements Ḟ (y) for y ∈ Q, a routine calculation

shows that V ] commutes with F and Ḟ , hence V ] induces a homomorphism of
displays

FrP : P → P(p).

(iii) By definition, for N ∈ NilR,

BTP(p)(N) = Coker[Ḟ (p) − id : Q̂(p)(N)→ P̂ (p)(N)],

see Theorem 2.29. Here

̂P (p)(N) = Ŵ (N)⊗W (R) P
(p) = Ŵ (N)⊗W (R) W (R)⊗F,W (R) P.

While by definition,

X(p)(N) = X(N[Frob]) = Coker
{
Ŵ (N[Frob])⊗W (R) Q→ Ŵ (N[Frob])⊗W (R) P

}
.

The identification

θ : Ŵ (N)⊗W (R) W (R)⊗F,W (R) P ' Ŵ (N[Frob])⊗W (R) P

ξ ⊗ 1⊗ y 7→ Fξ ⊗ Ḟ (y), ξ ∈ Ŵ (N), y ∈ Q
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and a similar isomorphism for Q establish the isomorphism BTP(p) ' X(p).

0 // Q̂(p)(N) //

θ

��

P̂ (p)(N) //

θ

��

BTP(p)(N) // 0

0 // Ŵ (N[Frob])⊗W (R) Q // Ŵ (N[Frob])⊗W (R) P // X(p)(N) // 0

Consider the following two diagram

Ŵ (N)⊗W (R) P //

F⊗idP
��

X(N)

FX

��
Ŵ (N[Frob])⊗W (R) P // X(N[Frob])

Ŵ (N)⊗W (R) P //

id⊗V ]

��

X(N)

FX

��
Ŵ (N)⊗W (R) P

(p) // X(N[Frob])

where the bottom arrow of the second diagram is obtained via the identification
θ : Ŵ (N) ⊗W (R) P

(p) ' Ŵ (N[Frob]) ⊗W (R) P . To show FX ' BT(FrP), we only
have to check that the second diagram is commutative. Since the Frobenius on
Ŵ (N) is just the operator F , the left diagram is commutative. Hence, to prove

(iii), it suffices to verify that for ξ ∈ Ŵ (N) and x ∈ P , the elements F ⊗ x ∈
Ŵ (N[Frob])⊗W (R)P = Ŵ (N)⊗F,W (R)P and ξ⊗V ]x ∈ Ŵ (N)⊗W (R)P

(p) have the
same image by the lower horizontal map of the left diagram. Since P is generated
as an abelian group by elements of the form uḞ (y) for y ∈ Q and u ∈ W (R), it

is enough to verify the equality for x = uḞy. In Ŵ (N) ⊗F,W (R) P , we have the
equalities:

Fξ ⊗ uḞy = F(ξu)⊗ Ḟ y = Ḟ (ξu⊗ y).

The last element has the same image in X(N[Frob]) as ξu⊗y, by the exact sequence
(2.11). Hence the lemma follows from the equality:

ξ ⊗ V ](uḞy) = ξu⊗ y.

We note that here the left hand side is considered as an element of Ŵ (N)⊗W (R)P
(p),

while the right hand side is considered as an element of Ŵ (N)⊗F,W (R) P . �

Remark 3.2.1. Let f : X → Y be a homomorphism of formal groups. Then f is
an isogeny if and only if there is an integer m and a homomorphism g : Y → X(pm)

such that g ◦ f = FmX .

X
f //

FmX ""FFFFFFFF Y

g
||yyyyyyyy

X(pm)

This is clear by the definition of an isogeny.

Next, we consider formal groups over a field.

Let K be a field such that p ·K = 0. Let Kn = K1/pn . We take Kn in a fixed
algebraic closure of K and such that Kn ⊂ Kn+1. Note that if K is perfect, then
Kn = K. Define

(3.1) AK = ∪W (Kn).



Lectures on p-Divisible Group 59

Note that if K is perfect, we have AK = W (K).

Lemma 3.3. The ring AK is a discrete valuation ring and p is a prime element.
Furthermore, we have

AK/pAK ' ∪Kn,

which is the perfect closure Kperf of K.

Proof. As in the proof of Lemma 2.42, we can see that p ∈ radAK . Since p = V ◦F
(see the proof of Proposition 2.15) in each W (Kn), by Proposition 2.13, we see that

p(x0, x1, . . . ) = (0, xp0, x
p
1, . . . ).

Then it is clear that AK/pAK = ∪Kn, which is a field. It follows that AK is a local
ring and pAK is the maximal ideal. It also follows that p is not nilpotent in AK .
In fact, if p is nilpotent, then pk = 0 in AK . Hence

pk(x0, x1, . . . ) = 0,

for every (x0, x1, . . . ) ∈W (Kn) and every n. But on the other hand, we have

pk(x0, x1, . . . ) = (0, . . . , 0, xp
k

0 , xp
k

1 , . . . ) 6= 0,

where xp
k

0 is in the k + 1-th places. This is a contradiction.

Claim: For any ξ ∈ AK , there is a natural number t such that ξ = ptζ for a unit
ζ ∈ AK .

Suppose ξ ∈W (Kn). Let t be the smallest integer such that we can write ξ = V tη
with η ∈ W (Kn) and W0(η) 6= 0. It is clear such t exist. Write η = (x0, x1, . . . ),

x0 6= 0. Define ζ = (x
1/pt

0 , x
1/pt

1 , . . . ) ∈ W (Kn+t). Then η = F tζ. Then ξ = ptζ.
We show ζ is a unit. Actually, for any y = (y0, y1, . . . ) ∈ W (Ki) for some i with
y0 6= 0, we will show that y is a unit in AK . In fact, we can write y = [y0] + z with
z ∈ VW (Ki), see Lemma 2.8 (2). By Lemma 2.8 (1), we see [y0] is a unit in W (Ki).
By Lemma 2.20, we know z ∈ radW (Ki), hence y is a unit. We get the claim.

By the claim and the fact p is not nilpotent in AK , we see that AK is an integral
domain. Now it is clear AK is a discrete valuation ring by the above claim. �

Remark 3.3.1. We claim that AK⊗ZQ = W (K)⊗ZQ, i.e., AK andW (K) have the
same fraction field. It is clear that W (K)⊗ZQ ⊂ AK⊗ZQ. For η ∈W (Kn) ⊂ AK ,
we know ξ = Fnη ∈W (K). Then

η =
1

pn
V nFnη =

1

pn
V nξ ∈W (K)⊗Z Q.

Hence AK ⊂ W (K) ⊗Z Q. So we have AK ⊗Z Q = W (K) ⊗Z Q. We denote the
quotient field by

WQ(K).

Note that the Frobenius F : AK → AK is given by (x0, x1, . . . ) 7→ (xp0, x
p
1, . . . ).

This is an isomorphism. We will denote it by σ later on, because there are so many
maps denoted by F .
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Definition 3.4. A Dieudonné module over AK is a pair (M,Φ), where M is a
free AK-module of finite type and Φ is an endomorphism of M , such that

Φ(ξm) = σ(ξ)Φ(m), ξ ∈ AK ,m ∈M
pM ⊂ Φ(M) ⊂M.

Note that Φ(M) is a submodule of M : ξΦ(m) = Φ(ηm) if σ(η) = ξ.

Remark 3.4.1. Since AK is a principal ideal domain, any submodule of a free
AK-module should be free. From this fact, we can see that Φ in Definition 3.4 is
injective. In fact, if it is not injective, then KerΦ should be a free module with
positive rank. Then rkΦ(M) < rkM = rkpM , which contradicts to pM ⊂ M .
Hence for a Dieudonné module (M,Φ), there is a well-defined map

Ψ : M →M

m 7→ m′, pm = Φ(m′).

This map is σ−1-linear and satisfies Ψ ◦ Φ = Φ ◦Ψ = p. Sometimes we will denote
Ψ by pΦ−1.

Conversely, suppose we are given a triple (M,Φ,Ψ), where M is a free AK-
module and Φ,Ψ are endomorphisms such that Φ is σ-linear and Ψ is σ−1-linear
and Ψ ◦Φ = Φ ◦Ψ = p. Then it is clear that (M,Φ) is a Dieudonné module. Hence
if K is perfect, Definition 3.4 is equivalent to Definition 2.26.

Definition 3.5. A Dieudonné module (M,Φ) is called nilpotent if Ψ defined in
Remark 3.4.1. is nilpotent on M/pM .

Later, we will see this definition is consistent with the nilpotence condition for
a display.

Let K be a field of characteristic p. We defined the ring AK in (3.1). Recall it
is a discrete valuation ring by Lemma 3.1.

Lemma 3.6. Let P = (P,Q, F, Ḟ ) be a display over K. Then

(M,Φ) = (AK ⊗W (K) P, σ ⊗ F )

is a Dieudonné module over AK . The display P is a nilpotent if and only if (M,Φ)
is a nilpotent Dieudonné module.

Proof. Let P = T ⊕ L,Q = IKT ⊕ L be a normal decomposition. Suppose T '
W (K)d and L 'W (K)c. Suppose the map

F ⊕ Ḟ : T ⊕ L→ P

is given by (
t
l

)
7→
(
A B
C D

)(
Ft
Fl

)
.

Then the map F : P → P is given by

F

(
t
l

)
=

(
A pB
C pD

)(
Ft
Fl

)
=

(
A B
C D

)(
Ed 0
0 pEc

)
σ

(
t
l

)
.



Lectures on p-Divisible Group 61

If we define a map Ψ : M →M , where M = AK ⊗W (K) P , by

Ψ =

(
pEd 0

0 Ec

)[
σ−1

(
A B
C D

)−1
]
σ−1,

then it is clear that Ψ is σ−1-linear and Φ ◦ Ψ = Ψ ◦ Φ = p, where Φ = σ ⊗ F .
Hence (AK ⊗W (K) P, σ ⊗ F ) is a Dieudonné module over AK .

The last assertion can be deduced by (2.16) and the definition of Ψ. �

Remark 3.6.1 If Pn is a display over Kn, the construction defined by Lemma 3.6
also gives an AK-module. In the next lemma, we can see that every Dieudonné
module over AK can be obtained in this way.

Lemma 3.7. Let (M,Φ) be a Dieudonné module over AK . Then there is an integer

n and a display P = (P,Q, F, Ḟ ) over Kn, such that M ' A(K) ⊗W (Kn) P and
Φ = σ ⊗ F , i.e., (M,Φ) is obtained from P by the construction in Lemma 3.6.

Proof. Let Ψ = pΦ−1 be the map defined in Remark 3.4.1. It is clear that pM ⊂
Ψ(M) ⊂ M . We know M/pM is a finite dimensional vector space over AK/pAK
and we have the following exact sequence of AK/pAK-vector spaces:

0→ Ψ(M)/pM →M/pM →M/Ψ(M)→ 0.

Let (ē1, . . . , ēd) be a basis of M/Ψ(M) and (ēd+1, . . . , ēh) be a basis of Ψ(M)/pM .
Lift ēi to ei ∈ M , such thatei ∈ Ψ(M) for i = d+ 1, . . . , h. Then by construction,
ei(mod pM), 1 ≤ i ≤ h is a basis of M/pM . Hence by Nakayama’s Lemma, we see
that (ei, 1 ≤ i ≤ h) is basis of M . Write

(3.2) Φ(ei) =

h∑
j=1

ajiej , i = 1, . . . , d.

Similar to that Φ is injective as we showed in Remark 3.4.1., we can see Ψ is also
injective by the same proof. Since we require ei ∈ Ψ(M), i = d+ 1, . . . , h, it makes
sense to talk Ψ−1(ei) for i = d+ 1, . . . , h. We write

(3.3) Ψ−1(ei) =
∑
j

ajiej , i = d+ 1, . . . , h.

In Equation (3.2) and (3.3), aij ∈ A(K). Since there are only finitely many aij ,
we can find an integer n such that aij ∈ W (Kn) for all i, j. Since Φ is injec-
tive, Φ(ei)(mod pM), 1 ≤ i ≤ d, forms a basis of Φ(M)/Φ(Ψ(M)) = Φ(M)/pM .
Similarly, Ψ−1(ei)(mod Φ(M)), d + 1 ≤ i ≤ h, is a basis of M/Φ(M). Then
by Nakayama’s Lemma again,

{
Φ(e1), . . . ,Φ(ed),Ψ

−1(ed+1),Ψ−1(eh)
}

is a basis
of M . Consequently, the matrix (aij)1≤i,j≤h lies in GLh(W (Kn)). We set T =
⊕1≤i≤dW (Kn)ei, L = ⊕d+1≤i≤hW (Kn)ei, P = T ⊕ L, Q = IKnT ⊕ L. Define

Fei =
∑
j

ajiej , i = 1, . . . , d,

Ḟ ei =
∑

ajiej , i = d+ 1, . . . , h.

It is clear that P = (P,Q, F, Ḟ ) is a display over W (Kn) and P ⊗W (Kn) AK = M ,
σ ⊗ F = Φ. �
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Lemma 3.8. Let X,Y be two formal p-divisible groups over K, then

Hom(X,Y ) ' HomK1/p(XK1/p , YK1/p),

where XK1/p is the base change of X under the inclusion K ↪→ K1/p. In general,
if X,Y are two formal p-divisible groups defined over Kn, then for any u ≥ m, we
have

HomKn(X,Y ) ' HomKu(Xu, Yu),

where Xu means the base change of X under the inclusion Kn ↪→ Ku.

Proof. The first assertion follows from Corollary 1.58, and the second assertion is
a corollary of the first one. �

Definition 3.9. We define the category of potential formal p-divisible groups
over K, denoted by C, as follows. The objects of C are pairs (X,n), where n ∈ N,
and X is a formal p-divisible group over Kn. The homomorphisms are defined by

Hom((X,n), (Y,m)) = Hom(XKu , YKu),

where u ≥ max(m,n). This definition is independent of the choice of u by Lemma
3.8.

Theorem 3.10. There is an equivalence of categories

{nilpotent Dieudonné-modules over AK} ' C.

Proof. Let (M,Φ) be a nilpotent Dieudonné module over AK . By Lemma 3.7, there

is an integer n and a display P = (P,Q, F, Ḟ ) such that M ' AK ⊗W (Kn) P . By
Lemma 3.6, P is nilpotent. Then by the Main Theorem 2.32, X = BTP is a formal
p-divisible group over Kn. Hence

(M,Φ) 7→ (P, n) 7→ (BTP , n)

defines a functor

{nilpotent Dieudonné-modules over AK} → C.

By Lemma 3.6, Remark 3.6.1. and Lemma 3.7, it is easy to see that

(M,Φ) 7→ (P, n)

is an equivalence of categories. The functor

(P, n) 7→ (X,n)

is an equivalence by the Main Theorem 2.32. We are done. �

Recall we use WQ(K) to denote the quotient field of AK , which is also the
quotient field of W (K). In this section, we fix the following notation. Let N be a
WQ(K) vector space. Let Φ : N → N be a bijective σa-linear map. Here a ≥ 1 is
a fixed integer. We will denote these data by a pair (N,Φ) in this section.

Definition 3.11. Let (N,Φ) be a pair as defined above. A lattice M of N is a
finite generated AK-module such that

WQ(K)⊗AK M ' N.

We fix the a lattice M . For x ∈ N , we define

ordMx = max
{
t ∈ Z|x ∈ ptM

}
.
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We define

ordMΦ = max
{
t ∈ Z|Φ(M) ⊂ ptM

}
.

We define the Newton slope of Φ by

Newt(N,Φ) = sup
n≥1

1

n
ordMΦn.

Remark 3.11.1. Since AK is a PID and any torsion free module over a PID is
free, we see a lattice is a free AK-module.

Remark 3.11.2 By definition, ordMx = t if and only if x ∈ ptM but x /∈ pt+1M .
Similarly, ordMΦ = t if and only if Φ(M) ⊂ ptM but Φ(M) * pt+1M .

Lemma 3.12. Notations as in the above definition.
(1) For m,n ≥ 1, we have

1

n
ordMΦn ≤ 1

mn
ordMΦmn.

(2) We have

Newt(N,Φ) = lim
n→∞

1

n
ordMΦn.

(3) The Newton slope defined above is independent of the choice of the lattice M .
This justifies the notation Newt(N,Φ).
(4) The Newton slope Newt(N,Φ) is finite.

Proof. (1) If ΦM ⊂ ptM , then ΦnM ⊂ ptnM . It follows that ordMΦn ≥ nordMΦ.
Hence, we have

1

n
ordMΦn ≤ 1

mn
ordMΦmn.

(2) To be added. �

Proposition 3.13. Let (N,Φ) be a pair as defined in the beginning of this section.
Let M be a lattice in N such that ΦuM ⊂ p−1M for some u ≥ dimWQ(K)N + 1.
Then there is a lattice M1 in N such that ΦM1 ⊂M1.

Proof. Put M ′ = M + ΦM + · · ·+ Φu−1M . Then

M ′ + ΦM ′ + · · ·+ ΦuM ′ =

2u−1∑
i=0

ΦiM

= M ′ +

u−1∑
j=0

Φj(ΦuM) ⊂M ′ +
u−1∑
j=0

Φjp−1M ⊂ p−1M ′.

Then we have a filtration

M ′ ⊂M ′ + ΦM ′ ⊂ · · · ⊂M ′ + · · ·+ ΦuM ′ ⊂ p−1M ′

of length u+ 1. Since

dimKperf p−1M ′/M ′ = dimKperf M ′ ⊗AK (AK/pAK) = rkM ′ = dimWQ(K)N < u,

there is an integer e, with 1 ≤ e ≤ u such that

M ′ + ΦM ′ + · · ·+ Φe−1M ′ = M ′ + · · ·+ ΦeM ′.
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Put

M1 = M ′ + ΦM ′ + · · ·+ Φe−1M ′.

Then it is clear that

Φ(M1) ⊂M1.

�

Proposition 3.14. Let (N,Φ) be a pair as defined in the beginning of this section.
Suppose h = dimWQ(K)N . Let M ⊂ N be an arbitrary lattice, put

M1 = M + ΦM + · · ·+ Φh−1M.

Then Φ(M1) ⊂M1.

Corollary 3.15. Let (N,Φ) be a pair defined in the beginning of this section.
Assume Newt(N,Φ) ≥ 0. Then N contains a Φ-invariant lattice.

Proof. Let M ⊂ N be an arbitrary lattice. Put h = dimN . By assumption that
the Newton slope is non-negative and (2) of Lemma 3.12, there is an integer n ∈ N
such that

1

n(h+ 1)
ordMΦn(h+1) ≥ − 1

h+ 1
,

i.e., ordMΦn(h+1) ≥ −n. Hence Φn(h+1)M ⊂ p−nM , namely,(
pΦh+1

)n
M ⊂M.

If we take M ′ = M + pΦh+1M + · · · + (pΦh+1)n−1M , then (pΦh+1)M ′ ⊂ M ′,
i.e., Φh+1M ′ ⊂ p−1M ′. Then by Proposition 3.13 there is a Φ-invariant lattice
M ⊂ N . �

Corollary 3.16. Let (N,Φ) be a pair as before, assume Newt(N,Φ) ≥ s
r , with

r, s ∈ Z, r > 0. Then there is a lattice M ⊂ N such that

ΦrM ⊂ psM.

Proof. We have Newt(N, p−sΦr) = rNewt(N,Φ)− s ≥ 0. Then by Corollary 3.16,
we have there is a lattice M ⊂ N such that p−sΦrM ⊂M . Then ΦrM ⊂ psM. �

Lemma 3.17. Given a pair (N,Φ) as before. Suppose dimN = h. Let M be a
lattice in N . Assume there is an integer n such that ordMΦ 6= 1

nordMΦn. Then

ordMΦ +
1

h
≤ 1

h
ordMΦh.

Proof. Put t = ordMΦ. By assumption and (1) of Lemma 3.12, we have t =
ordMΦ < 1

nordMΦn. Hence ordMΦn ≥ tn+ 1. Set

Mi =
{
m ∈M |Φi(m) ∈ pit+1M

}
.

Then above discussion shows that Mn = M . It is clear that Mi is an AK-submodule
of M . Given m ∈ Mi, then Φi(m) ∈ pit+1M . Hence Φi+1(m) ∈ pit+1Φ(M). By
definition of t, we have Φ(M) ⊂ ptM . So Φi+1(m) ∈ pt(i+1)+1M . It follows that
Mi ⊂Mi+1. Hence we get a filtration

pM = M0 ⊂M1 ⊂M2 ⊂ · · · ⊂Mi ⊂Mi+1 ⊂ · · · ⊂M.
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Claim: If Mi = Mi+1, then Mi+1 = Mi+2.
Let m ∈ Mi+2. Since Φ(M) ⊂ pt(M) by the definition of t, we can suppose
Φ(m) = ptm1 for some m1 ∈M . Now m ∈Mi+2 implies that

Φi+2(m) = Φi+1(Φ(m)) = ptΦi+1(m1) ∈ p(i+2)t+1M.

Hence Φi+1(m1) ∈ p(i+1)t+1M . So m1 ∈ Mi+1 by definition. Now by assumption,
m1 ∈Mi. So Φi(m1) ∈ pit+1M . This implies

Φi+1(m) = Φi(Φ(m)) = Φi(ptm1) = ptΦi(m1) ∈ p(i+1)t+1M,

i.e., m ∈Mi+1. The claim follows.

Since dimKperf M/pM = h, by the above claim there is an integer i ≤ h with
Mi = Mi+1. Since Mn = M for the given n, we must have Mh = Mn = M , i.e.,
Φh(M) ⊂ pht+1M . So by the definition of the order, we have

ordMΦh ≥ ht+ 1.

This is exactly what we want to show. �

Proposition 3.18 (Dirichlet). Given are x ∈ R, R ∈ Z with R ≥ 2. Then there
exist r, s ∈ Z, with 1 ≤ r ≤ R such that∣∣∣x− s

r

∣∣∣ ≤ 1

rR
.

This is an elementary result in Diophantine approximation.

Proof. If x is rational, nothing to prove. Suppose x is irrational, consider the set

{qx− [qx]; q = 0, 1, . . . , R} .
Here [qx] is the greatest integer less than or equal to qx. There are R + 1 distinct
points in this set, and each point of this set lies in the interval [0, 1], so there exists
0 ≤ q1 < q2 ≤ R such that

|(q2x− [q2x])− (q1x− [q1x])| ≤ 1/R.

Hence ∣∣∣∣x− [q2x]− [q1x]

q2 − q1

∣∣∣∣ ≤ 1

(q2 − q1)R
.

It suffices to take r = q2 − q1, s = [q2x]− [q1x]. �

Theorem 3.19. For any pair (N,Φ) as above, we have

Newt(N,Φ) ∈ Q.

Proof. Assume dimN = h. Let λ = Newt(N,Φ). By Lemma 3.12 (4), λ ∈ R. Then
by Proposition 3.18, there exists r, s ∈ Z, 1 ≤ r ≤ h+ 1 such that∣∣∣λ− s

r

∣∣∣ ≤ 1

r(h+ 1)
.

Set λ′ = rλ− s, Φ′ = p−sΦr. Then λ′ = Newt(N,Φ′). We have

− 1

h+ 1
≤ λ′ ≤ 1

h+ 1
.

By Corollary 3.16, there is a lattice M ′ ⊂ N such that

(Φ′)h+1 ⊂ p−1M ′.
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By Proposition 3.13, there exists a lattice M ⊂ N such that Φ′M ⊂ M . Hence
ordM (Φ′) ≥ 0 by the definition of the order. It follows that λ′ ≥ 0 by the definition
of the Newton slope.

Claim: λ′ = 0.
If λ′ > 0, by the definition of the Newton slope again, there is an integer n > 0,
such that

1

n
ordM (Φ′)n > 0.

If ordMΦ′ = 0, then by Lemma 3.17, we have

1

h
= ordMΦ′ +

1

h
≤ 1

h
ordM (Φ′)h ≤ λ′,

this contradicts λ′ ≤ 1
h+1 . So ordMΦ′ ≥ 1. But then

λ′ = sup
n

1

n
ordM (Φ′)n ≥ 1.

This contradicts λ′ ≤ 1
h+1 . The claim, hence the theorem, follows. �

3.1. 27. Let K be a field of characteristic p. Recall we have defined AK , which is
a discrete valuation ring. Our aim of this section is to prove the following

Theorem 3.20. Let M be a finitely generated free AK-module, Φ : M → M be a
σa-linear homomorphism.
(i) Then there is a unique direct summand Mbij ⊂M such that Mbij is Φ-invariant,
Φ : Mbij →Mbij is bijective and Φ : M/Mbij →M/Mbij is nilpotent modulo p.
(ii) Moreover, if K is separably closed, then Mbij has a basis m1, . . . ,mr such that
Φ(mi) = mi.

As a warm-up, let us first consider the case where K is perfect. In this case
AK = W (K). We begin with a lemma.

Lemma 3.21 (Fitting Decomposition Lemma.). Let R be a ring, σ an automor-
phism of R. Let M be an R-module of finite length and Φ : M → M a σa-linear
homomorphism.
(i) Then there is a unique decomposition M = Mbij⊕Mnil such that both Mbij and
Mnil are Φ-invariant, Φ|Mbij is bijective and Φ|Mnil is nilpotent.
(ii) Furthermore, the decomposition in (i) is functorial. More precisely, Let S be
another ring with an automorphism σ′, and f : R → S a ring homomorphism re-

specting the automorphisms. Put MS = M ⊗R S. Let MS = Mbij
S ⊕Mnil

S be the

corresponding decomposition. Then Mbij
S 'Mbij ⊗R S and Mnil

S 'Mnil ⊗R S.

Proof. Recall that M has finite length if and only if M satisfies both ascending
chain condition and descending chain condition. Consider the following chains:

KerΦ ⊂ KerΦ2 ⊂ · · · ⊂ KerΦt ⊂ · · ·
ImΦ ⊃ ImΦ2 ⊃ · · · ⊃ ImΦt ⊃ · · · .

Since σ is an automorphism, it is easy to check both KerΦt and ImΦi are submod-
ules of M . That M has finite length implies that there is an integer t such that
for any s > t, we have KerΦs = KerΦt−1, ImΦs = ImΦt−1. Take Mbij = ImΦt,
Mnil = KerΦt. It is clear that Φ|Mnil is nilpotent. Given m ∈ Mbij, then Φ(m) ∈
Φt+1(M) = Mbij by the choice of t. Hence Mbij is Φ-invariant. Similarly Mnil
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is also Φ-invariant. Suppose m ∈ Mbij and Φ(m) = 0. Since m ∈ Mbij = ImΦt,
we can suppose m = Φt(m1) for m1 ∈ M . Then 0 = Φ(m) = Φt+1(m1). Hence
m1 ∈ KerΦt+1 = KerΦt. We get m = Φt(m1) = 0, i.e., Φ|Mbij is injective. If
m ∈ Mbij = ImΦt, we can take m1 ∈ M such that m = Φt(m1) = Φ(Φt−1m1).
Now Φt−1m ∈ ImΦt−1 = ImΦt. We get that Φ|Mbij is bijective.

Now we have to show that M = Mbij ⊕ Mnil. Since Φ|Mbij is bijective and
Φ|Mnil is nilpotent, we must have Mbij ∩ Mnil = 0. So it suffices to show that
M = Mbij +Mnil. Given m ∈M , we have Φt(m) ∈ ImΦt = ImΦ2t. So there exist
m1 ∈ M such that Φt(m) = Φ2t(m1). Then m − Φtm1 ∈ KerΦt = Mnil. Hence
M = Mbij +Mnil.

Now we show the uniqueness. If M = Mbij
1 ⊕Mnil

1 is another decomposition,

consider Mbij
1 ∩ Mnil. Since Φ|Mbij

1
is bijective and Φ|Mnil is nilpotent, we get

Mbij
1 ∩ Mnil = 0. Hence Mbij

1 ⊂ Mbij. Symmetrically, Mbij ⊂ Mbij
1 . Hence

Mbij
1 = Mbij

1 . Similarly, Mnil
1 = Mnil. The functorial property follows from the

uniqueness. �

Proposition 3.22. Let K be a perfect field, and M a finitely generated free W (K)-
module. Suppose Φ : M → M is a σa-linear homomorphism. Recall σ = F here.
Then there is a decomposition M = Mbij ⊕Mnil such that both Mnil and Mbij are
Φ-invariant, Φ|Mbij is bijective and Φ|Mnil is nilpotent.

This assertion is stronger than that of Theorem 3.20.

Proof. Set M(n) = Wn(K) ⊗W (K) M . Note that Wn(K) is an Artin ring since
Wn(K) is a finite dimensional vector space over the field K. Then M(n) has finite
length. Take σn = F to be the Frobenius on Wn(K). Then σn is an automorphism
of Wn(K). Take Φn = Fn ⊗Φ, which is σan-linear. Hence we can apply Lemma 3.21
to get a decomposition

M(n) = M(n)bij ⊕M(n)nil

for Φn. By the functorial property, we see
{
M(n)bij

}
n

forms a projective system.

Put Mbij = lim←−M(n)bij. Similarly, we can define Mnil = lim←−M(n)nil. It is easy to

see that M = Mbij ⊕Mnil gives the desired decomposition. �

Remark 3.22.1 The proof of Proposition 3.22. suggests that we can reduce
the problem to a problem over Artin rings, and then take projective limit. In
our general case, we have Artin rings AK/p

nAK . Then we have a decomposi-
tion Mn = M/pnM = Mbij

n ⊕Mnil
n . But the module lim←−M

bij
n is a module over

ÂK = W (Kperf), which is not AK in general. This is not what we want to get.

Let us go back to our general case, i.e., the situation of Theorem 3.20. Since M
is finitely generated, we can find an integer m such that Φ is defined over Km =
K1/pm , i.e., there is free module M0 over W (Km) and a Fa -linear homomorphism
Φ0 : M0 →M0 such that M = AK ⊗W (Km) M0 and Φ = σa ⊗ Φ0. Set

M(n) = Wn(Km)⊗W (Km) M0,

Φn = Fa ⊗ Φ0 : M(n)→M(n).
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Proposition 3.23. There exists a unique Φn-invariant direct summand M(n)bij

of M(n) such that Φ]n : M(n)bij →M(n)bij is an isomorphism and Φn is nilpotent
on M(n)/M(n)bij. Here Φ]n is the linearization of Φn, see Definition 2.21.

Example 3.23.1. If K is not perfect, a stronger assertion as in Proposition 3.22.
is false. But we can expect Proposition 3.23. to be true. For example, let K
be a non-perfect field. Let n be 1. Then W1(K) = K. Consider the K-module
M = K1/p with the F -linear map Φ : M → M defined by Φ(m) = mp. Then
K ⊂M and Φ|K : K → K, k 7→ kp. It is easy to see that

Φ] : K ⊗Frob,K K → K

ξ ⊗ k 7→ ξpk

is an isomorphism. But Φ|K is not surjective. It is clear that Φ is zero on M/K.
Hence we can take Mbij = K. But there is no Mnil ⊂M such that M = K ⊕Mnil

and Mnil 'M/K. Note that in this example F is not an isomorphism on K, so we
cannot use Lemma 3.21.

Remark 3.23.2. Assume Proposition 3.23., then Mbij
0 = lim←−M(n)bij is a W (Km)-

module and Mbij = AK ⊗W (Km)M
bij
0 satisfying the condition Theorem 3.20. (why

is Φ : Mbij →Mbij bijective?) Hence, Proposition 3.23. implies Theorem 3.20. (i).

We now proceed to prove Proposition 3.23. We start with a lemma.

Lemma 3.24 (Dieudonné). Assume K is a separably closed field and V is a finite
dimensional vector space over K. Let Φ : V → V be a Froba-linear isomorphism,
i.e., Φ(ξv) = ξp

a

Φ(v), where a is a positive integer. Then V has a basis of Φ-
invariant vectors, i.e., we can write V = ⊕Kei with Φ(ei) = ei.

The proof of this lemma is omitted.

Remark 3.24.1. Notations as in Lemma 3.24. For v ∈ V , we can write v =
∑
ξei

with ξi ∈ K. Then Φ(v) = v implies that ξp
a

i = ξi, i.e., ξi ∈ Fpa for all i. Hence
V0 = V Φ is an Fpa -vector space and we have

V = K ⊗Fpa V0.

Note that under this isomorphism, we have Φ(ξ ⊗ v0) = ξp
a ⊗ v0.

Corollary 3.25. Assume K is separably closed. Let Mn be a free Wn(K)-module
and Φ : Mn →Mn an Fa-linear isomorphism. Then there is a free Wn(Fpa)-module
such that

Mn = Wn(K)⊗Wn(Fpa ) L.

Under this isomorphism, we have Φ(ξ ⊗ l) = Faξ ⊗ l.

Proof. The corollary is a direct consequence of Remark 3.24.1. and Nakayama’s
Lemma, by noting that Wn(K)/pWn(K) = K is separably closed. �

Proposition 3.26. Let R be a ring such that p · R = 0, and M a free Wn(R)-
module. Let Φ : M →M be an Fa-linear homomorphism. Then the functor

CR : {R-algebra} −→ Sets
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CR(S) =
{
m ∈Wn(S)⊗Wn(R) M | F

a

⊗ Φ(m) = m
}

for S ∈ {R-algebra} is representable by an affine étale scheme over R.

Proof. For simplicity, we write C for CR. Let {e1, . . . , ed} be a basis of M . Suppose
Φ(ej) =

∑
aijei with aij ∈Wn(R). Let A = (aij). Then Φ(m) = AF

a

m. So

C(S) =
{
m ∈Wn(S)d| m = AF

a

m
}
.

Since Wn(S) ' AnS , we see that C(S) is a closed subscheme of (AnS)d. Hence C is
representable.

To show that C is representable by an étale scheme, we have to show: for any
exact

0 // a // S
f // T // 0 ,

where S,R are two R-algebras and f : S � T is a surjective ring homomorphism
with kernel a such that a2 = 0, then f induce a bijection C(f) : C(S) ' C(T ).

We have the following commutative diagram

C(S) //

��

C(T )

��
0 // Wn(a)⊗Wn(R) M // Wn(S)⊗Wn(R) M // Wn(T )⊗Wn(R) M // 0

We first show that C(f) is injective. If m ∈ C(S) such that f(m) = 0, we have to
show that m = 0. By the above diagram, we see that m ∈Wn(a)⊗Wn(R)M , hence
we can write m =

∑
ξi ⊗ ni with ξi ∈ Wn(a) and ni ∈M . Now m ∈ C(S) implies

that m = Fa ⊗ Φ(m) =
∑

Faξi ⊗ Φ(ni). If ξi = (x0, x1, . . . ), xi ∈ a, then p · R = 0
implies Fξi = (xp0, x

p
1, . . . ), see Proposition 2.13. Now a2 = 0 implies Faξi = 0. So

m = 0.

Next, we check that C(f) is surjective. For m ∈ C(T ), we first lift m to m̃ ∈
Wn(S) ⊗Wn(R) M. Denote η = Fa ⊗ Φ(m̃) − m̃. Then Fa ⊗ Φ(m̃) is a lift of
Fa ⊗Φ(m) = m, since m ∈ C(T ). Hence η ∈Wn(a)⊗Wn(R) M . As above, we have
Fa ⊗ Φ(η) = 0. Then

Fa ⊗ Φ(m̃+ η) = m̃+ η,

i.e., m̃+ η ∈ C(S). It is clear that m̃+ η is a lift of m. We are done. �

Now we turn to the proof of Proposition 3.23.
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